Bài 55 trang 30 SGK Toán 9 tập 1 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc ha


Bài 55 trang 30 SGK Toán 9 tập 1

Phân tích thành nhân tử (với a, b, x, y là các số không âm)

Phân tích thành nhân tử (với \(a,\ b,\ x,\ y\) là các số không âm)

LG a

\(ab + b\sqrt a  + \sqrt a  + 1\)

Phương pháp giải:

+ Phân tích đa thức thành nhân tử bằng cách sử dụng:

-Phương pháp đặt nhân tử chung

- Phương pháp nhóm hạng tử.

- Phương pháp dùng hằng đẳng thức

+ Sử dụng: \(\sqrt a.\sqrt a=a,\)  với \(a \ge 0\).

Lời giải chi tiết:

Ta có:

\(ab+b\sqrt{a}+\sqrt{a}+1=(ab+b\sqrt{a})+(\sqrt{a}+1)\)

\(=(ba+b\sqrt{a})+(\sqrt{a}+1)\)

\(=\left( {b. {\sqrt a .\sqrt a }  + b\sqrt a} \right)+ \left( {\sqrt a  + 1} \right)\)

\(=[(b\sqrt a).\sqrt a+ b\sqrt a.1]+(\sqrt a + 1)\)

\(=b\sqrt{a}(\sqrt{a}+1)+(\sqrt{a}+1)\)

\(=(\sqrt{a}+1)(b\sqrt{a}+1)\).

LG b

\(\sqrt {{x^3}}  - \sqrt {{y^3}}  + \sqrt {{x^2}y}  - \sqrt {x{y^2}} \)

Phương pháp giải:

+ Phân tích đa thức thành nhân tử bằng cách sử dụng:

-Phương pháp đặt nhân tử chung

- Phương pháp nhóm hạng tử.

- Phương pháp dùng hằng đẳng thức

+ Sử dụng hằng đẳng thức:

\(a^2+2ab+b^2=(a+b)^2\)

\((a-b)(a+b)=a^2-b^2\)

\(a^3-b^3=(a-b)(a^2+ab+b^2)\)

+ \((\sqrt a)^2=a,\)  với \(a \ge 0\).

Lời giải chi tiết:

Ta có:

Cách 1: Sử dụng hằng đẳng thức số \(7\):

\(\sqrt{x^{3}}-\sqrt{y^{3}}+\sqrt{x^{2}y}-\sqrt{xy^{2}}\)

\(=[(\sqrt x)^3-(\sqrt y)^3]+ (\sqrt{x.xy}-\sqrt{y.xy})\)

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2]\)

\(+ (\sqrt{x}.\sqrt{xy}-\sqrt{y}.\sqrt{xy})\)

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2]\)

\(+ \sqrt{xy}.(\sqrt{x}-\sqrt{y})\)

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + \sqrt x.\sqrt y+(\sqrt y)^2+\sqrt{xy}]\)

\(=(\sqrt x-\sqrt y).[(\sqrt x)^2 + 2\sqrt x.\sqrt y+(\sqrt y)^2]\)

\(=(\sqrt x-\sqrt y).(\sqrt x+\sqrt y)^2\).

Cách 2: Nhóm các hạng tử:

\(\sqrt{x^{3}}-\sqrt{y^{3}}+\sqrt{x^{2}y}-\sqrt{xy^{2}}\)

\(=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\) (vì x, y>0)

\(=(x\sqrt{x}+x\sqrt{y})-(y\sqrt{x}+y\sqrt{y})\)

\(=x(\sqrt{x}+\sqrt{y})-y(\sqrt{y}+\sqrt{x})\)

\(=(\sqrt{x}+\sqrt{y})(x-y)\)

\(=(\sqrt{x}+\sqrt{y})(\sqrt x+\sqrt y)(\sqrt x -\sqrt y)\)

\(=(\sqrt{x}+\sqrt{y})^2(\sqrt{x}-\sqrt{y})\).


Cùng chủ đề:

Bài 53 trang 60 SGK Toán 9 tập 2
Bài 53 trang 89 SGK Toán 9 tập 2
Bài 54 trang 30 SGK Toán 9 tập 1
Bài 54 trang 63 SGK Toán 9 tập 2
Bài 54 trang 89 SGK Toán 9 tập 2
Bài 55 trang 30 SGK Toán 9 tập 1
Bài 55 trang 63 SGK Toán 9 tập 2
Bài 55 trang 89 SGK Toán 9 tập 2
Bài 56 trang 30 SGK Toán 9 tập 1
Bài 56 trang 63 SGK Toán 9 tập 2
Bài 56 trang 89 SGK Toán 9 tập 2