Bài 56 trang 89 SGK Toán 9 tập 2 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 7. Tứ giác nội tiếp


Bài 56 trang 89 SGK Toán 9 tập 2

Xem hình 47. Hãy tìm số đo các góc của tứ giác ABCD

Đề bài

Xem hình 47. Hãy tìm số đo các góc của tứ giác \(ABCD.\)

Phương pháp giải - Xem chi tiết

+) Áp dụng công thức góc ngoài của tam giác.

+) Tổng số đo hai góc đối diện của tứ giác nội tiếp bằng \(180^0.\)

Lời giải chi tiết

Ta có \(\widehat{BCE} = \widehat{DCF}\) (hai góc đối đỉnh)

Đặt \(x = \widehat{BCE} = \widehat{DCF}\). Theo tính chất góc ngoài tam giác, ta có:

\(\widehat{ABC}= x+40^0\)  (góc ngoài của \(\Delta BCE\).)      (1)

\(\widehat{ADC}=x +20^0\)   (góc ngoài của \(\Delta DCF\).)          (2)

Lại có \(\widehat{ABC} +\widehat{ADC}=180^0.\) (hai góc đối diện tứ giác nội tiếp).  (3)

Từ (1), (2), (3) suy ra:   \(180^0 =2x + 60^0 \Rightarrow x = 60^0.\)

Hay \( \widehat{BCE} = \widehat{DCF}=60^0. \)

Từ (1), ta có: \(\widehat{ABC}=60^0 +40^0 =100^0.\)

Từ (2), ta có: \(\widehat{ADC} = 60^0+20^0 = 80^0.\)

\(\widehat{BCD}= 180^0  – \widehat{BCE} \) (hai góc kề bù)

\(\Rightarrow\widehat{BCD} = 120^0\)

\(\widehat{BAD} = 180^0  - \widehat{BCD}\) (hai góc đối diện của tứ giác nội tiếp)

\(\Rightarrow \widehat{BAD}= 180^0– 120^0= 60^0.\)


Cùng chủ đề:

Bài 55 trang 30 SGK Toán 9 tập 1
Bài 55 trang 63 SGK Toán 9 tập 2
Bài 55 trang 89 SGK Toán 9 tập 2
Bài 56 trang 30 SGK Toán 9 tập 1
Bài 56 trang 63 SGK Toán 9 tập 2
Bài 56 trang 89 SGK Toán 9 tập 2
Bài 57 trang 30 SGK Toán 9 tập 1
Bài 57 trang 63 SGK Toán 9 tập 2
Bài 57 trang 89 SGK Toán 9 tập 2
Bài 58 trang 32 SGK Toán 9 tập 1
Bài 58 trang 63 SGK Toán 9 tập 2