Bài 56 trang 63 SGK Toán 9 tập 2
Giải các phương trình:
Giải các phương trình:
LG a
\(3{{\rm{x}}^4} - 12{{\rm{x}}^2} + 9 = 0\)
Phương pháp giải:
Phương pháp giải phương trình trùng phương: Đặt \({x^2} = t\left( {t \ge 0} \right)\). Sau đó giải phương trình ẩn t theo công thức nghiệm của phương trình bậc 2. Tìm t đối chiếu điều kiện, từ đó thay vào cách đặt để tìm ra x.
Lời giải chi tiết:
\(3{{\rm{x}}^4} - 12{{\rm{x}}^2} + 9 = 0\)
Đặt \(t = {x^2}\left( {t \ge 0} \right)\)
Ta có phương trình:
\(\eqalign{ & 3{t^2} - 12t + 9 = 0 \cr & \Leftrightarrow {t^2} - 4t + 3 = 0 \cr} \)
Phương trình có \(a + b + c = 0\) nên có hai nghiệm \({t_1} = 1; {t_2} = 3\) (đều thỏa mãn)
Với \({t_1} = 1 \Rightarrow {x^2} = 1 \Leftrightarrow x = \pm 1\)
Với \({t_2} = 3 \Rightarrow {x^2} = 3 \Leftrightarrow x = \pm \sqrt 3\)
Vậy phương trình đã cho có 4 nghiệm phân biêt.
LG b
\(2{{\rm{x}}^4} + 3{{\rm{x}}^2} - 2 = 0\)
Phương pháp giải:
Phương pháp giải phương trình trùng phương: Đặt \({x^2} = t\left( {t \ge 0} \right)\). Sau đó giải phương trình ẩn t theo công thức nghiệm của phương trình bậc 2. Tìm t đối chiếu điều kiện, từ đó thay vào cách đặt để tìm ra x.
Lời giải chi tiết:
\(2{{\rm{x}}^4} + 3{{\rm{x}}^2} - 2 = 0\)
Đặt \(t = {x^2}\left( {t \ge 0} \right)\)
Ta có phương trình :
\(\eqalign{ & 2{t^2} + 3t - 2 = 0 \cr & \Delta = 9 + 16 = 25 \Rightarrow \sqrt \Delta = 5 \cr & \Rightarrow {t_1} = {{ - 3 + 5} \over 4} = {1 \over 2}(TM);{t_2} = - 2(loại) \cr}\)
Với \(\displaystyle t = {1 \over 2} \Rightarrow {x^2} = {1 \over 2} \\\displaystyle \Leftrightarrow x = \pm \sqrt {{1 \over 2}} = \pm {{\sqrt 2 } \over 2}\)
Vậy phương trình đã cho có 2 nghiệm phân biệt.
LG c
\({x^4} + 5{{\rm{x}}^2} + 1 = 0\)
Phương pháp giải:
Phương pháp giải phương trình trùng phương: Đặt \({x^2} = t\left( {t \ge 0} \right)\). Sau đó giải phương trình ẩn t theo công thức nghiệm của phương trình bậc 2. Tìm t đối chiếu điều kiện, từ đó thay vào cách đặt để tìm ra x.
Lời giải chi tiết:
\({x^4} + 5{{\rm{x}}^2} + 1 = 0\)
Đặt \(t = {x^2}\left( {t \ge 0} \right)\)
Ta có phương trình :
\(t^2 + 5t + 1 = 0\)
\(\Delta = 25 – 4 = 21\)
\(\eqalign{ & \Rightarrow {t_1} = {{ - 5 + \sqrt {21} } \over 2} < 0(loại) \cr & {t_2} = {{ - 5 - \sqrt {21} } \over 2} < 0(loại) \cr} \)
Vậy phương trình vô nghiệm.