Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 3 - Đại số 9 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số


Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 3 - Đại số 9

Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 3 - Đại số 9

Đề bài

Bài 1: Giải hệ phương trình : \(\left\{ \matrix{  \left( {1 + \sqrt 2 } \right)x + \left( {1 - \sqrt 2 } \right)y = 5 \hfill \cr  \left( {1 + \sqrt 2 } \right)x + \left( {1 + \sqrt 2 } \right)y = 3. \hfill \cr}  \right.\)

Bài 2: Tìm giá trịcủa  m để đường thẳng \(y = mx + 2\) đi qua giao điểm của hai đường thẳng (d 1 ): \(2x +3y = 7\) và (d 2 ) : \(3x + 2y = 13.\)

LG bài 1

Phương pháp giải:

Giải hệ phương trình bằng phương pháp cộng đại số

Lời giải chi tiết:

Bài 1: Ta có  : \(\left\{ \matrix{  \left( {1 + \sqrt 2 } \right)x + \left( {1 - \sqrt 2 } \right)y = 5 \hfill \cr  \left( {1 + \sqrt 2 } \right)x + \left( {1 + \sqrt 2 } \right)y = 3 \hfill \cr}  \right.\)

\(\Leftrightarrow \left\{ \matrix{  2\sqrt {2y}  =  - 2 \hfill \cr  \left( {1 + \sqrt 2 } \right)x + \left( {1 - \sqrt 2 } \right)y = 5 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  y =  - {1 \over {\sqrt 2 }} \hfill \cr  x = {{7\sqrt 2  - 6} \over 2}. \hfill \cr}  \right.\)

LG bài 2

Phương pháp giải:

+Tọa độ giao điểm của (d 1 ) và (d 2 ) thỏa mãn hệ phương trình được lập bởi phương trình của (d 1 ) và (d 2 )

+Thay x,y tìm được vào phương trình đường thẳng chứa tham số từ đó tìm m

Lời giải chi tiết:

Bài 2: Tọa độ giao điểm của (d 1 ) và (d 2 ) thỏa mãn hệ :

\(\left\{ \matrix{  2x + 3y = 7 \hfill \cr  3x + 2y = 13 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  4x + 6y = 14 \hfill \cr  9x + 6y = 39 \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{  5x = 25 \hfill \cr  2x + 3y = 7 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x = 5 \hfill \cr  y =  - 1. \hfill \cr}  \right.\)

Thế \(x = 5; y = − 1\) vào phương trình \(y = mx + 2\), ta được :

\( - 1 = 5m + 2 \Leftrightarrow m =  - {3 \over 5}.\)


Cùng chủ đề:

Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 1 - Hình học 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 1 - Đại số 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 2 - Hình học 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 2 - Đại số 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 3 - Hình học 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 3 - Đại số 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 4 - Đại số 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 5 - Chương 2 - Hình học 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 5 - Chương 2 - Đại số 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 5 - Chương 3 - Hình học 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 5 - Chương 3 - Đại số 9