Đề kiểm tra 15 phút - Đề số 4 - Bài 7 - Chương 4 - Đại số 9 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 7. Phương trình quy về phương trình bậc hai


Đề kiểm tra 15 phút - Đề số 4 - Bài 7 - Chương 4 - Đại số 9

Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 7 - Chương 4 - Đại số 9

Đề bài

Bài 1 : Tìm m để phương trình \({x^4} - 3{x^2} + m - 1 = 0\) có đúng ba nghiệm.

Bài 2 : Giải phương trình:

a)\(\sqrt {3{x^2} - 9x + 1}  = 2 - x\)

b) \({\left( {x + 1} \right)^2} + \left| {x + 1} \right| - 2 = 0.\)

LG bài 1

Phương pháp giải:

Đặt ẩn phụ để đưa về phương trình bậc hai

Phương trình ban đầu có đúng 3 nghiệm khi phương trình bậc hai có 1 nghiệm bằng 0

Thế nghiệm bằng 0 vào phương trình bậc hai ta tìm được m

Thay m vào phương trình bậc hai để thử lại

Lời giải chi tiết:

Bài 1: Đặt \(t = {x^2},t \ge 0.\) Ta có phương trình: \({t^2} - 3t + m - 1 = 0.\) Nếu \(t = 0\) là một nghiệm của phương trình trên, ta có :

\({0^2} - 3.0 + m - 1 \Rightarrow m = 1\)

Thử lại: Với \(m = 1\), phương trình trên có dạng :

\({t^2} - 3t = 0 \Leftrightarrow \left[ \matrix{  t = 0 \hfill \cr  t = 3 \hfill \cr}  \right.\)

Khi đó, ta có ba nghiệm của phương trình trùng phương: \(x = 0;    x =  \pm \sqrt 3 .\)

Vậy \(m = 1.\)

LG bài 2

Phương pháp giải:

a. Sử dụng

\(\sqrt A  = B \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{B \ge 0}\\{A = {B^2}}\end{array}} \right.\)

b. Đặt ẩn phụ : \(t = \left| {x + 1} \right|;t \ge 0.\)

Lời giải chi tiết:

Bài 2: a) \(\sqrt {3{x^2} - 9x + 1}  = 2 - x \)

\(\Leftrightarrow \left\{ \matrix{  3{x^2} - 9x + 1 = 4 - 4x + {x^2} \hfill \cr  2 - x \ge 0 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  2{x^2} - 5x - 3 = 0 \hfill \cr  x \le 2 \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{  \left[ \matrix{  x =  - {1 \over 2} \hfill \cr  x = 3 \hfill \cr}  \right. \hfill \cr  x \le 2 \hfill \cr}  \right. \Leftrightarrow x =  - {1 \over 2}.\)

b) Đặt \(t = \left| {x + 1} \right|;t \ge 0.\) Ta có phương trình:

\({t^2} + t - 2 = 0 \Leftrightarrow \)

Vậy : \(\left| {x + 1} \right| = 1 \Leftrightarrow \left[ \matrix{  x + 1 = 1 \hfill \cr  x + 1 =  - 1 \hfill \cr}  \right.\)

\(\Leftrightarrow \left[ \matrix{  x = 0 \hfill \cr  x =  - 2. \hfill \cr}  \right.\)


Cùng chủ đề:

Đề kiểm tra 15 phút - Đề số 4 - Bài 6 - Chương 2 - Hình học 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 6 - Chương 3 - Hình học 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 6 - Chương 4 - Đại số 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 7 - Chương 1 - Đại số 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 7 - Chương 3 - Hình học 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 7 - Chương 4 - Đại số 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 8 - Chương 1 - Đại số 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 8 - Chương 2 - Hình học 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 8 - Chương 3 - Hình học 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 8 - Chương 4 - Đại số 9
Đề kiểm tra 15 phút - Đề số 4 - Bài 9 - Chương 1 - Đại số 9