Loading [MathJax]/jax/output/CommonHTML/jax.js

Đề kiểm tra giữa kì 1 Toán 9 - Đề số 9 có lời giải chi tiết — Không quảng cáo

Đề thi toán 9, đề kiểm tra toán 9 có đáp án và lời giải chi tiết Đề thi giữa kì 1 Toán 9


Đề kiểm tra giữa kì 1 Toán 9 - Đề số 9 có lời giải chi tiết

Tải về

Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

Đề kiểm tra giữa kì 1 Toán 9 - Đề số 9 có lời giải chi tiết

Đề bài

Bài 1 ( 2,5 điểm)

Cho hai biểu thức A=x+1x3B=x3x9+1x+323x với x0 ; x9 .

a) Tính giá trị của biểu thức A với x=0,25 .

b) Rút gọn biểu thức B .

c) Cho P=BA . Chứng minh rằng P<1 với mọi giá trị x thỏa mãn điều kiện.

Bài 2 (2,0 điểm) Tìm x , biết

a) 25x+75+15.x+325=2+4x+3

b) x22x+1=2x+3

Bài 3 (1,5 điểm)

Một chiếc thang dài 3,5 m. Cần đặt chân thang cách tường một khoảng bằng bao nhiêu để nó tạo với phương nằm ngang của mặt đất một góc an toàn 65 . (làm tròn kết quả đến chữ số thập phân thứ hai)

Bài 4 (3,5 điểm)

Cho đường tròn (O;R) , đường kính AB . Kẻ tiếp tuyến Ax , lấy điểm C trên Ax(AC>R) . Từ C kẻ tiếp tuyến tại CD với (O) (D là tiếp điểm ) .

a) Chứng minh bốn điểm A,C,D,O cùng thuộc một đường tròn.

b) Chứng minh OC//BD .

c) Đường thẳng vuông góc với AB tại O cắt tia BD tại M . Chứng minh OMCD là hình bình hành.

d) Gọi K là giao điểm của CDOM , E là giao điểm của CDOD ; I là giao điểm của AMOC . Chứng minh E , K , I thẳng hàng.

Bài 5 (0,5 điểm) Cho x , y , z là các số thực không âm thỏa mãn x+y+z=1 . Tính giá trị biểu thức P=2x2+x+1+2y2+y+1+2z2+z+1

-------- Hết --------

Lời giải chi tiết

Bài 1 ( 2,5 điểm)

Cho hai biểu thức A=x+1x3B=x3x9+1x+323x với x0 ; x9 .

a) Tính giá trị của biểu thức A với x=0,25 .

b) Rút gọn biểu thức B .

c) Cho P=BA . Chứng minh rằng P<1 với mọi giá trị x thỏa mãn điều kiện.

Phương pháp

a) Kiểm tra x=0,25 có thỏa mãn điều kiện hay không, sau đó thay vào biểu thức A để tính.

b) Xác định mẫu thức chung, quy đồng và thực hiện các phép toán với các phân thức đại số.

c) Tính P=BA . Chứng minh P – 1 < 0.

Lời giải

a) Tính giá trị của biểu thức A với x=0,25 .

Thay x=0,25 (tmdk) vào biểu thức A ta được:

A=x+1x3=0,25+10,253=0,5+10,53=1,52,5=35

b) Rút gọn biểu thức B .

B=x3x9+1x+323x với x0 ; x9 .

B=x3(x+3)(x3)+1x+3+2x3B=x3+x3+2(x+3)(x+3)(x3)=x+3x(x+3)(x3)=x(x+3)(x+3)(x3)

B=xx3 .

c) Cho P=BA . Chứng minh rằng P<1 với mọi giá trị x thỏa mãn điều kiện: x0 ; x9 .

P=BA=xx3:x+1x3=x(x3)(x3)(x+1)=xx+1

Xét P1=xx+11=1x+1

x+1>0 ; 1<0 nên 1x+1<0 với x0 ; x9 .

P1<0 với x0 ; x9 .

Bài 2 (2,0 điểm) Tìm x , biết

a) 25x+75+15.x+325=2+4x+3

b) x22x+1=2x+3

Phương pháp

Xác định điều kiện xác định của phương trình.

a) Đưa các hệ số ra ngoài căn, nhóm nhân tử chung để tìm x.

b) Sử dụng hằng đẳng thức để biến đổi vế trái về trị tuyệt đối để tìm x.

Lời giải

a) 25x+75+15.x+325=2+4x+3

5x+3+3.x+3=2+4x+3

5x+3+3.x+34x+3=2

4x+3=2 (đk: x3 )

x+3=12

x+3=14

x=114 (thỏa mãn)

Vậy phương trình có nghiệm x=114

b) x22x+1=2x+3 (đk: x32 )

(x1)2=2x+3

|x1|=2x+3

[x1=2x+3x1=2x3

[x1=2x+3x1=2x3

[x=43x=2

[x=4(L)x=23(TM)

Vậy phương trình có nghiệm x=23

Bài 3 (1,5 điểm)

Một chiếc thang dài 3,5 m. Cần đặt chân thang cách tường một khoảng bằng bao nhiêu để nó tạo với phương nằm ngang của mặt đất một góc an toàn 65 . (làm tròn kết quả đến chữ số thập phân thứ hai)

Phương pháp

Sử dụng hệ thức lượng trong tam giác vuông để tính.

Lời giải

Theo đề bài ta có hình vẽ sau

Ta có BC=3,5 m; ^ABC=65

Xét ΔABC vuông tại A , có:

cos^ABC=ABBC (hệ thức lượng trong tam giác vuông)

cos65=AB3,5

AB=3,5.cos65

AB1,48 m

Vậy cần đặt thang sao cho chân thang cách tường khoảng 1,48 m

Bài 4 (3,5 điểm)

Cho đường tròn (O;R) , đường kính AB . Kẻ tiếp tuyến Ax , lấy điểm C trên Ax(AC>R) . Từ C kẻ tiếp tuyến tại CD với (O) (D là tiếp điểm ) .

a) Chứng minh bốn điểm A,C,D,O cùng thuộc một đường tròn.

b) Chứng minh OC//BD .

c) Đường thẳng vuông góc với AB tại O cắt tia BD tại M . Chứng minh OMCD là hình bình hành.

d) Gọi K là giao điểm của CDOM , E là giao điểm của CDOD ; I là giao điểm của AMOC . Chứng minh E , K , I thẳng hàng.

Phương pháp

a) Chứng minh tam giác AOC và DOC thuộc đường tròn đường kính OC.

b) Chứng minh OCADBDAD nên OC // BD.

c) Chứng minh OMCD có cặp cạnh đối song song và bằng nhau.

d) Chứng minh KE vuông góc với CO tại I.

Lời giải

a) Chứng minh tam giác AOC vuông tại A nên A thuộc đường tròn đường kính OC

Chứng minh tam giác DOC vuông tại D nên D thuộc đường tròn đường kính OC

Do đó bốn điểm A , C , D , O cùng thuộc một đường tròn đường kính OC .

b) Xét (O) có: CA , CD là 2 tiếp tuyến cắt nhau tại C ( gt)

Suy ra: CA=CD (tính chất 2 tiếp tuyến cắt nhau)

Suy ra: C thuộc trung trực của AD (1)

Lại có: OA=OD=R

Suy ra O thuộc đường tròn đường kính AD (2)

Từ (1) và (2) suy ra: OC là đường trung trực của AD

Suy ra: OCAD

Ta lại chứng minh được : BDAD

OC//BD

c) Kéo dài BD cắt AC tại H

Do OA=OBCO//BD}CA=CH

CM tương tự M là trung điểm của HB

Xét tam giác AHB

OA=OBCA=CH}CO=12HB

MB=CO

MB//CO

Suy ra OMCD là hình bình hành.

d) Chứng minh AOMC là hình chữ nhật

ΔKMC=ΔKDOKC=KOΔKOC cân tại K

ODOBCMKOCMDOE}EKCO

ΔKOC cân tại K;IC=IO;EKCO nên E , K , I thẳng hàng.

Bài 5 (0,5 điểm) Cho x , y , z là các số thực không âm thỏa mãn x+y+z=1 . Tính giá trị biểu thức P=2x2+x+1+2y2+y+1+2z2+z+1

Phương pháp

Dựa vào giả thiết suy ra với 0a1 thì 2a2+a+1(a+1)2 để tính giá trị biểu thức P.

Lời giải

Do x+y+z1x,y,z là các số thực không âm

0x1x2xx2+x2+x+1x2+x+x+12x2+x+1(x+1)2

Tương tự: 0y12y2+y+1(y+1)2

0z12z2+z+1(z+1)2

Nên P=2x2+x+1+2y2+y+1+2z2+z+1x+1+y+1+z+1

P(x+y+z)+3=4Pmax=4

Dấu “=” xảy ra x=y=0;z=1 hoặc x=z=0;y=1 hoặc y=z=0;x=1


Cùng chủ đề:

Đề kiểm tra giữa học kì 1 Toán 9 - Đề số 3
Đề kiểm tra giữa học kì 2 Toán 9 - Đề số 1
Đề kiểm tra giữa kì 1 Toán 9 - Đề số 6 có lời giải chi tiết
Đề kiểm tra giữa kì 1 Toán 9 - Đề số 7 có lời giải chi tiết
Đề kiểm tra giữa kì 1 Toán 9 - Đề số 8 có lời giải chi tiết
Đề kiểm tra giữa kì 1 Toán 9 - Đề số 9 có lời giải chi tiết
Đề kiểm tra giữa kì 1 Toán 9 - Đề số 10 có lời giải chi tiết
Đề kiểm tra giữa kì 1 Toán 9 - Đề số 11 có lời giải chi tiết
Đề kiểm tra giữa kì 1 Toán 9 - Đề số 12 có lời giải chi tiết
Đề kiểm tra giữa kì 1 Toán 9 - Đề số 13 có lời giải chi tiết
Đề kiểm tra giữa kì 1 Toán 9 - Đề số 14 có lời giải chi tiết