Đề kiểm tra học kì 2 Toán 9 - Đề số 2 — Không quảng cáo

Đề thi, đề kiểm tra Toán lớp 9


Đề kiểm tra học kì 2 Toán 9 - Đề số 2

Đề bài

Câu 1 :

Chọn khẳng định đúng. Trong một đường tròn, số đo cung nhỏ bằng

  • A.

    Số đo cung lớn

  • B.

    Số đo của góc ở tâm chắn cung đó

  • C.

    Số đo của góc ở tâm chắn cung lớn

  • D.

    Số đo của cung nửa đường tròn

Câu 2 :

Góc ở hình nào dưới đây biểu diễn góc tạo bởi tiếp tuyến và dây cung?

  • A.

    Hình $1$

  • B.

    Hình $2$

  • C.

    Hình $3$

  • D.

    Hình $4$

Câu 3 :

Chọn khẳng định đúng.

  • A.

    Trong một đường tròn, đường kính đi qua trung điểm của một dây ( không đi qua tâm ) thì đi qua điểm chính giữa của cung bị căng bởi dây ấy.

  • B.

    Trong một đường tròn, đường kính đi qua trung điểm của một dây  thì đi qua điểm chính giữa của cung bị căng bởi dây ấy.

  • C.

    Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì song song với dây căng cung ấy

  • D.

    Trong một đường tròn, hai đường kính luôn vuông góc với nhau

Câu 4 :

Cho hệ phương trình \(\left\{ \begin{array}{l}2x - 3y = 1\\4x + y = 9\end{array} \right.\) . Nghiệm của hệ phương trình là $\left( {x;y} \right)$ , tính $x - y$

  • A.

    $x - y =  - 1$

  • B.

    $x - y = 1$

  • C.

    $x - y = 0$

  • D.

    $x - y = 2$

Câu 5 :

Cho hai đường tròn $\left( {O;8\,cm} \right)$ và $\left( {O';6cm} \right)$ cắt nhau tại $A,B$ sao cho $OA$ là tiếp tuyến của $\left( {O'} \right)$. Độ dài dây $AB$ là

  • A.

    $AB = 8,6\,cm$

  • B.

    $AB = 6,9\,cm$

  • C.

    $AB = 4,8\,cm$

  • D.

    $AB = 9,6\,cm$

Câu 6 :

Điền vào các vị trí $\left( 1 \right);\left( 2 \right)$  trong bảng sau ($R$ là bán kính của đường tròn, $d$ là khoảng cách từ tâm đến đường thẳng) :

$R$

$d$

Vị trí tương đối của đường thẳng và đường tròn

$5cm$

$\,4\,cm$

...............$\left( 1 \right)$...................

$8cm$

...$\left( 2 \right)$...

Tiếp xúc nhau

  • A.

    $\left( 1 \right)$ : cắt nhau ; $\left( 2 \right)$ : $8\,cm$

  • B.

    $\left( 1 \right)$ : $9\,cm$; $\left( 2 \right)$ : cắt nhau

  • C.

    $\left( 1 \right)$ : không cắt  nhau ; $\left( 2 \right)$ : $8\,cm$

  • D.

    $\left( 1 \right)$ : cắt nhau ; $\left( 2 \right)$ : $6\,cm$

Câu 7 :

Cho hai đường thẳng $d:y = x + 3$ và $d':y =  - 2x$. Khi đó

  • A.

    $d{\rm{//}}d'$

  • B.

    $d \equiv d'$

  • C.

    $d$ cắt $d'$

  • D.

    \(d \bot d'\)

Câu 8 :

Giá trị của biểu thức \(\sqrt {32}  + \sqrt {50}  - 3\sqrt 8  - \sqrt {18} \) là

  • A.

    $1$

  • B.

    $0$

  • C.

    $2$

  • D.

    $3$

Câu 9 :

Đưa thừa số $\sqrt {81{{\left( {2 - y} \right)}^4}} $ ra ngoài  dấu căn ta được ?

  • A.

    $9\left( {2 - y} \right)$

  • B.

    $81{\left( {2 - y} \right)^2}$

  • C.

    $9{\left( {2 - y} \right)^2}$

  • D.

    $ - 9{\left( {2 - y} \right)^2}$

Câu 10 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = a,AC = b,AB = c.\) Chọn khẳng định sai ?

  • A.

    \(b = a.\sin B = a.\cos C\)

  • B.

    $a = c.\tan B = c.\cot C$

  • C.

    ${a^2} = {b^2} + {c^2}$

  • D.

    \(c = a.\sin C = a.\cos B\)

Câu 11 :

Số đường tròn nội tiếp của một đa giác đều là

  • A.

    \(1\)

  • B.

    \(2\)

  • C.

    \(3\)

  • D.

    \(0\)

Câu 12 :

Hộp sữa ông Thọ có dạng hình trụ (đã bỏ nắp) có chiều cao \(h = 12cm\) và đường kính đáy là \(d= 8\,cm\) . Tính diện tích các mặt của hộp sữa. Lấy \(\pi  \approx 3,14\)

  • A.

    \(110\pi \,\left( {c{m^2}} \right)\)

  • B.

    \(128\pi \,\left( {c{m^2}} \right)\)

  • C.

    \(96\pi \,\left( {c{m^2}} \right)\)

  • D.

    \(112\pi \,\left( {c{m^2}} \right)\)

Câu 13 :

Cho đường thẳng $d:$ $y = \left( {m + 2} \right)x - 5$ đi qua điểm $A\left( { - 1;2} \right)$ . Hệ số góc của đường thẳng $d$

  • A.

    $1$

  • B.

    $11$

  • C.

    $ -7$

  • D.

    $7$

Câu 14 :

Cho tam giác $MNP$ vuông tại $N$. Hệ thức nào sau đây là đúng ?

  • A.

    $MN = MP.\sin P$

  • B.

    $MN = MP.\cos P$

  • C.

    $MN = MP.\tan P$

  • D.

    $MN = MP.\cot P$

Câu 15 :

Số giao điểm của đường thẳng $d:y = 2x + 4$ và  parabol  $\left( P \right):y = {x^2}$ là:

  • A.

    $2$

  • B.

    $1$

  • C.

    $0$

  • D.

    $3$

Câu 16 :

Tìm $m$ để phương trình $2m{x^2} - \left( {2m + 1} \right)x - 3 = 0$ có nghiệm là $x = 2$.

  • A.

    $m =  - \dfrac{5}{4}$

  • B.

    $m = \dfrac{1}{4}$

  • C.

    $m = \dfrac{5}{4}$

  • D.

    $m =  - \dfrac{1}{4}$

Câu 17 :

Cho nửa đường tròn \(\left( O \right)\) đường kính \(AB\) và \(C\) là điểm trên cung nhỏ \(AB\) (cung \(CB\) nhỏ hơn cung \(CA\) ). Tiếp tuyến tại \(C\) của nửa đường tròn cắt đường thẳng \(AB\) tại \(D\) . Biết tam giác \(ADC\)  cân tại \(C\) . Tính góc \(ADC\) .

  • A.

    $40^\circ $

  • B.

    $45^\circ $

  • C.

    $60^\circ $

  • D.

    $30^\circ $

Câu 18 :

Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình ${x^2} - 6x + 7 = 0$

  • A.

    $\dfrac{1}{6}$

  • B.

    $3$

  • C.

    $6$

  • D.

    $7$

Câu 19 :

Rút gọn biểu thức  \(5\sqrt a  - 4b\sqrt {25{a^3}}  + 5a\sqrt {16a{b^2}}  - \sqrt {9a} \) với $a \ge 0;b \ge 0$ ta được kết quả là

  • A.

    $2\sqrt {2a} $

  • B.

    $4\sqrt a $

  • C.

    $8\sqrt a $

  • D.

    $2\sqrt a $

Câu 20 :

Rút gọn biểu thức \(2\sqrt a  - \sqrt {9{a^3}}  + {a^2}\sqrt {\dfrac{{16}}{a}}  + \dfrac{2}{{{a^2}}}\sqrt {36{a^5}} \) với $a > 0$ ta được

  • A.

    $14\sqrt a  + a\sqrt a $

  • B.

    $14\sqrt a  - a\sqrt a $

  • C.

    $14\sqrt a  + 2a\sqrt a $

  • D.

    $20\sqrt a  - 2a\sqrt a $

Câu 21 :

Cho hai đồ thị của hàm số bậc nhất là hai đường thẳng $d:y = \left( {m + 2} \right)x - m$ và $d':y =  - 2x - 2m + 1$. Với giá trị nào của $m$ thì $d$ cắt $d'$?

  • A.

    $m \ne  - 2$

  • B.

    $m \ne  - 4$

  • C.

    $m \ne \left\{ { - 2; - 4} \right\}$

  • D.

    $m \ne \left\{ {2; - 4} \right\}$

Câu 22 :

Cho hệ phương trình $\left\{ \begin{array}{l}2x + by =  - 1\\bx - 2ay = 1\end{array} \right.$. Biết rằng hệ phương trình có nghiệm là $\left( {1; - 2} \right)$, tính $a - b$.

  • A.

    $\dfrac{{13}}{8}$

  • B.

    $ - \dfrac{{13}}{8}$

  • C.

    $\dfrac{5}{8}$

  • D.

    $ - \dfrac{5}{8}$

Câu 23 :

Cho hệ phương trình $\left\{ \begin{array}{l}(m - 1)x + y = 2\\mx + y = m + 1\end{array} \right.$ ( $m$ là tham số) . Kết luận nào sau đây là đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình

  • A.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y \le {\rm{3}}$

  • B.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y > {\rm{3}}$

  • C.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y \ge {\rm{3}}$

  • D.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y = {\rm{3}}$

Câu 24 :

Một mảnh đất hình chữ nhật có chu vi bằng $42$  m. Đường chéo hình chữ nhật dài $15$  m. Tính độ dài chiều rộng mảnh đất hình chữ nhật.

  • A.

    $10\,\,m$

  • B.

    $12\,\,m$

  • C.

    $9\,\,m$

  • D.

    $8\,\,m$

Câu 25 :

Một canô chạy trên sông trong $7$  giờ, xuôi dòng \(108\,km\) và ngược dòng \(63\,km\) . Một lần khác cũng trong 7 giờ canô xuôi dòng \(81\,km\) và ngược dòng \(84\,km\) . Tính vận tốc nước chảy.

  • A.

    $4\,{\rm{km/h}}$

  • B.

    $3\,{\rm{km/h}}$

  • C.

    $2\,{\rm{km/h}}$

  • D.

    $2,5\,{\rm{km/h}}$

Câu 26 :

Cho phương trình \(\left( {m - 3} \right){x^2} - 2mx + m - 6 = 0\). Tìm các giá trị của $m$ để phương trình vô nghiệm

  • A.

    $m <  - 2$

  • B.

    $m < 2$

  • C.

    $m < 3$

  • D.

    $m <  - 3$

Câu 27 :

Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 3} \right)x + 8 - 4m = 0\) có hai nghiệm âm phân biệt.

  • A.

    $m < 2$ và $m \ne 1$

  • B.

    $m < 3$

  • C.

    $m <2$

  • D.

    $m > 0$

Câu 28 :

Biết rằng phương trình  $\left( {m - 2} \right){x^2} - \left( {2m + 5} \right)x + m + 7 = 0\,\left( {m \ne 2} \right)$ luôn có nghiệm ${x_1};{x_2}$ với mọi $m$. Tìm ${x_1};{x_2}$ theo $m$.

  • A.

    ${x_1} =  - 1;{x_2} =  - \dfrac{{m + 7}}{{m - 2}}$

  • B.

    ${x_1} = 1;{x_2} =  - \dfrac{{m + 7}}{{m - 2}}$

  • C.

    ${x_1} = 1;{x_2} = \dfrac{{m + 7}}{{m - 2}}$

  • D.

    ${x_1} =  - 1;{x_2} = \dfrac{{m + 7}}{{m - 2}}$

Câu 29 :

Số nghiệm của phương trình \(3{x^3} + 3{x^2} + 5x + 5 = 0\) là:

  • A.

    $2$

  • B.

    $0$

  • C.

    $1$

  • D.

    $3$

Câu 30 :

Một ca nô chạy xuôi dòng với quãng đường $42{\rm{km}}$, rồi sau đó ngược dòng trở lại $20{\rm{ km}}$ hết tổng cộng $5{\rm{h}}$. Biến vận tốc của dòng nước chảy là $2{\rm{ km/h}}$. Tính vận tốc của ca nô lúc dòng nước yên lặng.

  • A.

    $11{\rm{ }}\left( {{\rm{km/h}}} \right)$

  • B.

    $12{\rm{ }}\left( {{\rm{km/h}}} \right)$

  • C.

    $14{\rm{ }}\left( {{\rm{km/h}}} \right)$

  • D.

    $15{\rm{ }}\left( {{\rm{km/h}}} \right)$

Câu 31 :

Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Đường tròn đường kính $BH$ cắt $AB$ tại $D$, đường tròn đường kính $CH$ cắt $AC$ tại $E$ . Chọn khẳng định sai trong các khẳng định sau

  • A.

    $DE$ là cát tuyến của đường tròn đường kính $BH$

  • B.

    $DE$ là tiếp tuyến của đường tròn đường kính $BH$

  • C.

    Tứ giác$AEHD$ là hình chữ nhật

  • D.

    $DE \bot DI$ (với $I$ là trung điểm $BH$)

Câu 32 :

Cho đường tròn $(O).$ Từ một điểm $M$ ở ngoài $(O)$, vẽ hai tiếp tuyến $MA$ và $MB$ sao cho góc $AMB$ bằng ${120^0}$. Biết chu vi tam giác $MAB$ là $6\left( {3 + 2\sqrt 3 } \right)cm$, tính độ dài dây $AB.$

  • A.

    $18\,cm$

  • B.

    $6\sqrt 3 cm$

  • C.

    $12\sqrt 3 \,cm$

  • D.

    $15\,cm$

Câu 33 :

Cho hai đường tròn $\left( {O;20cm} \right)$ và $\left( {O';15cm} \right)$ cắt nhau tại $A$ và$B$. Tính đoạn nối tâm $OO'$, biết rằng$AB = 24cm$ và $O$ và $O'$ nằm cùng phía đối với $AB$ .

  • A.

    $OO' = 7cm$

  • B.

    $OO' = 8cm$

  • C.

    $OO' = 9cm$

  • D.

    $OO' = 25cm$

Câu 34 :

Cho đường  tròn $(O)$ và hai dây cung $AB,AC$ bằng nhau. Qua $A$ vẽ một cát tuyến cắt dây $BC$ ở $D$ và cắt $(O)$ ở $E$.  Khi đó \(A{B^2}\) bằng

  • A.

    \(AD.AE\)

  • B.

    \(AD.AC\)

  • C.

    \(AE.BE\)

  • D.

    \(AD.BD\)

Câu 35 :

Cho tam giác nhọn \(ABC\)  nội tiếp \(\left( O \right)\) . Kẻ tiếp tuyến \(xAy\) với \(\left( O \right)\) . Từ \(B\) kẻ \(BM{\rm{//}}xy\left( {M \in AC} \right)\) . Khi đó tích $AM.AC$ bằng

  • A.

    \(A{B^2}\)

  • B.

    \(B{C^2}\)

  • C.

    \(A{C^2}\)

  • D.

    \(A{M^2}\)

Câu 36 :

Cho đường tròn $\left( O \right)$ đường kính $AB$. Gọi $I$ là trung điểm của $OA$ . Dây $CD$ vuông góc với $AB$ tại $I$. Lấy $K$ tùy ý trên cung $BC$ nhỏ, $AK$ cắt $CD$ tại $H$. Khẳng định nào đúng ?

  • A.

    Tứ giác $BIHK$ nội tiếp.

  • B.

    Tứ giác $BIHK$ không nội tiếp.

  • C.

    Tứ giác $BIHK$ là hình chữ nhật.

  • D.

    Các đáp án trên đều sai.

Câu 37 :

Cho \(\Delta ABC\) vuông ở $A$ . Trên cạnh $AC$ lấy điểm $M$ và vẽ đường tròn đường kính $MC$ . Kẻ $BM$ cắt đường tròn tại $D$ . Đường thẳng $DA$ cắt đường tròn tại $S$ . Chọn đáp án sai trong các đáp án sau:

  • A.

    Tứ giác $ABCD$ nội tiếp.

  • B.

    \(\widehat {ABD} = \widehat {ACD}\)

  • C.

    $CA$ là phân giác của \(\widehat {SCB}.\)

  • D.

    Tứ giác $ABCS$ nội tiếp.

Câu 38 :

Cho tam giác đều \(ABC\) nội tiếp đường tròn \(\left( O \right)\). Độ dài của các cung \(AB,BC,CA\) đều bằng \(4\pi \). Diện tích của tam giác đều \(ABC\) là:

  • A.

    \(27\sqrt 3 \) $cm^2$

  • B.

    \(7\sqrt 3 \) $cm^2$

  • C.

    \(29\sqrt 3 \) $cm^2$

  • D.

    \(9\sqrt 3 \) $cm^2$

Lời giải và đáp án

Câu 1 :

Chọn khẳng định đúng. Trong một đường tròn, số đo cung nhỏ bằng

  • A.

    Số đo cung lớn

  • B.

    Số đo của góc ở tâm chắn cung đó

  • C.

    Số đo của góc ở tâm chắn cung lớn

  • D.

    Số đo của cung nửa đường tròn

Đáp án : B

Lời giải chi tiết :

Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.

Câu 2 :

Góc ở hình nào dưới đây biểu diễn góc tạo bởi tiếp tuyến và dây cung?

  • A.

    Hình $1$

  • B.

    Hình $2$

  • C.

    Hình $3$

  • D.

    Hình $4$

Đáp án : A

Lời giải chi tiết :

Cho đường tròn tâm \((O)\) có \(Ax\) là tia tiếp tuyến tại tiếp điểm $A$ và dây cung $AB.$ Khi đó, góc \(BAx\)là góc tạo bởi tia tiếp tuyến và dây cung.

Câu 3 :

Chọn khẳng định đúng.

  • A.

    Trong một đường tròn, đường kính đi qua trung điểm của một dây ( không đi qua tâm ) thì đi qua điểm chính giữa của cung bị căng bởi dây ấy.

  • B.

    Trong một đường tròn, đường kính đi qua trung điểm của một dây  thì đi qua điểm chính giữa của cung bị căng bởi dây ấy.

  • C.

    Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì song song với dây căng cung ấy

  • D.

    Trong một đường tròn, hai đường kính luôn vuông góc với nhau

Đáp án : A

Lời giải chi tiết :

+) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy.

+) Trong một đường tròn, đường kính đi qua trung điểm của một dây ( không đi qua tâm ) thì đi qua điểm chính giữa của cung bị căng bởi dây ấy.

+) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại.

Câu 4 :

Cho hệ phương trình \(\left\{ \begin{array}{l}2x - 3y = 1\\4x + y = 9\end{array} \right.\) . Nghiệm của hệ phương trình là $\left( {x;y} \right)$ , tính $x - y$

  • A.

    $x - y =  - 1$

  • B.

    $x - y = 1$

  • C.

    $x - y = 0$

  • D.

    $x - y = 2$

Đáp án : B

Phương pháp giải :

Nhân cả hai vế của phương trình thứ nhất với 3 để được phương trình mới có hệ số của biến đối nhau.

Sử dụng phương pháp cộng đại số để tìm nghiệm của hệ.

Lời giải chi tiết :

Ta có

\(\left\{ \begin{array}{l}2x - 3y = 1\\4x + y = 9\end{array} \right. \)

$\left\{ \begin{array}{l}2x - 3y = 1\\12x + 3y = 27\end{array} \right.$

$\left\{\begin{array}{l}2x - 3y = 1\\2x - 3y+12x+3y =1+ 27\end{array} \right.$

$\left\{ \begin{array}{l}2x - 3y = 1\\14x = 28\end{array} \right. $

\(\left\{ \begin{array}{l}x = 2\\y = 1\end{array} \right.\)

Vậy hệ đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {2;1} \right)\)

$ \Rightarrow x - y = 2 - 1 = 1$ .

Câu 5 :

Cho hai đường tròn $\left( {O;8\,cm} \right)$ và $\left( {O';6cm} \right)$ cắt nhau tại $A,B$ sao cho $OA$ là tiếp tuyến của $\left( {O'} \right)$. Độ dài dây $AB$ là

  • A.

    $AB = 8,6\,cm$

  • B.

    $AB = 6,9\,cm$

  • C.

    $AB = 4,8\,cm$

  • D.

    $AB = 9,6\,cm$

Đáp án : D

Phương pháp giải :

Sử dụng  tính chất đường nối tâm của hai đường tròn cắt nhau và hệ thức lượng trong tam giác vuông.

Lời giải chi tiết :

Vì $OA$ là tiếp tuyến của $\left( {O'} \right)$ nên $\Delta OAO'$ vuông tại $A$.

Vì $\left( O \right)$ và $\left( {O'} \right)$ cắt nhau tại $A,B$ nên đường nối tâm $OO'$ là trung trực của đoạn $AB$.

Gọi giao điểm của $AB$ và $OO'$ là $I$ thì $AB \bot OO'$ tại $I$ là trung điểm của $AB$

Áp dụng hệ thức lượng trong tam giác vuông $OAO'$ ta có

$\dfrac{1}{{A{I^2}}} = \dfrac{1}{{O{A^2}}} + \dfrac{1}{{O'{A^2}}} = \dfrac{1}{{{8^2}}} + \dfrac{1}{{{6^2}}} \Rightarrow AI = 4,8\,cm \Rightarrow AB = 9,6\,cm$

Câu 6 :

Điền vào các vị trí $\left( 1 \right);\left( 2 \right)$  trong bảng sau ($R$ là bán kính của đường tròn, $d$ là khoảng cách từ tâm đến đường thẳng) :

$R$

$d$

Vị trí tương đối của đường thẳng và đường tròn

$5cm$

$\,4\,cm$

...............$\left( 1 \right)$...................

$8cm$

...$\left( 2 \right)$...

Tiếp xúc nhau

  • A.

    $\left( 1 \right)$ : cắt nhau ; $\left( 2 \right)$ : $8\,cm$

  • B.

    $\left( 1 \right)$ : $9\,cm$; $\left( 2 \right)$ : cắt nhau

  • C.

    $\left( 1 \right)$ : không cắt  nhau ; $\left( 2 \right)$ : $8\,cm$

  • D.

    $\left( 1 \right)$ : cắt nhau ; $\left( 2 \right)$ : $6\,cm$

Đáp án : A

Phương pháp giải :

Sử dụng bảng vị trí tương đối của đường thẳng và đường tròn

Vị trí tương đối của đường thẳng và đường tròn

Số điểm

chung

Hệ thức giữa

$d$ và $R$

Đường thẳng và đường tròn cắt nhau

$2$

$d < R$

Đường thẳng và đường tròn tiếp xúc nhau

$1$

$d = R$

Đường thẳng và đường tròn không giao nhau

$0$

$d > R$

Lời giải chi tiết :

+) Vì $d < R\left( {4cm < 5cm} \right)$ nên đường thẳng cắt đường tròn

+) Vì đường thẳng tiếp xúc với đường tròn nên $d = R = 8\,cm$

Câu 7 :

Cho hai đường thẳng $d:y = x + 3$ và $d':y =  - 2x$. Khi đó

  • A.

    $d{\rm{//}}d'$

  • B.

    $d \equiv d'$

  • C.

    $d$ cắt $d'$

  • D.

    \(d \bot d'\)

Đáp án : C

Phương pháp giải :

Sử dụng vị trí tương đối giữa hai đường thẳng

Cho hai đường thẳng $d:y = ax + b\,\,\left( {a \ne 0} \right)$ và $d':y = a'x + b'\,\,\left( {a' \ne 0} \right)$.

+) $d{\rm{//}}d' \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.$

+) \(d\)cắt$d'$\( \Leftrightarrow a \ne a'\).

+) \(d \equiv d' \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b = b'\end{array} \right.\).

+) \(d \bot d' \Leftrightarrow a.a' =  - 1\).

Lời giải chi tiết :

Ta thấy $d:y = x + 3$ có $a = 1$ và $d':y =  - 2x$ có $a' =  - 2$$ \Rightarrow a \ne a'\left( {1 \ne  - 2} \right)$ nên $d$ cắt $d'$.

Câu 8 :

Giá trị của biểu thức \(\sqrt {32}  + \sqrt {50}  - 3\sqrt 8  - \sqrt {18} \) là

  • A.

    $1$

  • B.

    $0$

  • C.

    $2$

  • D.

    $3$

Đáp án : B

Phương pháp giải :

-Sử dụng công thức khai phương một tích  \(\sqrt {AB}  = \sqrt A .\sqrt B ,\,\,\left( {A,B \ge 0} \right)\) đưa biểu thức về các căn thức cùng loại (cùng biểu thức dưới dấu căn).

-Cộng trừ các căn thức

Lời giải chi tiết :

\(\sqrt {32}  + \sqrt {50}  - 3\sqrt 8  - \sqrt {18} \)\( = \sqrt {16.2}  + \sqrt {25.2}  - 3\sqrt {4.2}  - \sqrt {9.2} \)

\(= 4\sqrt 2  + 5\sqrt 2  - 6\sqrt 2  - 3\sqrt 2  = 0\)

Câu 9 :

Đưa thừa số $\sqrt {81{{\left( {2 - y} \right)}^4}} $ ra ngoài  dấu căn ta được ?

  • A.

    $9\left( {2 - y} \right)$

  • B.

    $81{\left( {2 - y} \right)^2}$

  • C.

    $9{\left( {2 - y} \right)^2}$

  • D.

    $ - 9{\left( {2 - y} \right)^2}$

Đáp án : C

Phương pháp giải :

Sử dụng công thức đưa thừa số ra ngoài dấu căn: Với hai biểu thức $A,B$ mà $B \ge 0$, ta có $\sqrt {{A^2}B}  = \left| A \right|\sqrt B  = \left\{ \begin{array}{l}A\sqrt B \,\,{\rm{khi}}\,\,A \ge 0\\ - A\sqrt B \,{\rm{khi}}\,A < 0\end{array} \right.$

Lời giải chi tiết :

Ta có $\sqrt {81{{\left( {2 - y} \right)}^4}}  = \sqrt {81.{{\left[ {{{\left( {2 - y} \right)}^2}} \right]}^2}}  = \left| {{{\left( {2 - y} \right)}^2}} \right|\sqrt {81}  = 9{\left( {2 - y} \right)^2}$

Câu 10 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = a,AC = b,AB = c.\) Chọn khẳng định sai ?

  • A.

    \(b = a.\sin B = a.\cos C\)

  • B.

    $a = c.\tan B = c.\cot C$

  • C.

    ${a^2} = {b^2} + {c^2}$

  • D.

    \(c = a.\sin C = a.\cos B\)

Đáp án : B

Lời giải chi tiết :

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = a,AC = b,AB = c.\) Ta có :

+) Theo định lý Py-ta-go ta có ${a^2} = {b^2} + {c^2}$ nên C đúng

+) Theo hệ thức về cạnh và góc trong tam giác vuông ta có

\(b = a.\sin B = a.\cos C\); \(c = a.\sin C = a.\cos B\); \(b = c.\tan B = c.\cot C\); \(c = b.\tan C = b.\cot B\).

Nên A,D đúng.

Câu 11 :

Số đường tròn nội tiếp của một đa giác đều là

  • A.

    \(1\)

  • B.

    \(2\)

  • C.

    \(3\)

  • D.

    \(0\)

Đáp án : A

Lời giải chi tiết :

Bất kì đa giác đều nào cũng có một và chỉ một đường tròn ngoại tiếp, có một và chỉ một đường tròn nội tiếp.

Câu 12 :

Hộp sữa ông Thọ có dạng hình trụ (đã bỏ nắp) có chiều cao \(h = 12cm\) và đường kính đáy là \(d= 8\,cm\) . Tính diện tích các mặt của hộp sữa. Lấy \(\pi  \approx 3,14\)

  • A.

    \(110\pi \,\left( {c{m^2}} \right)\)

  • B.

    \(128\pi \,\left( {c{m^2}} \right)\)

  • C.

    \(96\pi \,\left( {c{m^2}} \right)\)

  • D.

    \(112\pi \,\left( {c{m^2}} \right)\)

Đáp án : D

Phương pháp giải :

Sử dụng công thức tính diện tích xung quanh của hình trụ ${S_{xq}} = 2\pi Rh$ và diện tích một đáy ${S_d} = \pi {R^2}.$

Lời giải chi tiết :

Bán kính đường tròn đáy \(R = \dfrac{8}{2} = 4\,cm\)  nên diện tích một đáy ${S_d} = \pi {R^2} = 16\pi \,(c{m^2})$

Ta có diện tích xung quanh của hình trụ: ${S_{xq}} = 2\pi Rh = 2\pi .4.12 = 96\pi \,(c{m^2})$

Vì hộp sữa đã mất nắp nên diện tích các mặt của hộp sữa là:

\(96\pi  + 16\pi  = 112\pi \,\left( {c{m^2}} \right).\)

Câu 13 :

Cho đường thẳng $d:$ $y = \left( {m + 2} \right)x - 5$ đi qua điểm $A\left( { - 1;2} \right)$ . Hệ số góc của đường thẳng $d$

  • A.

    $1$

  • B.

    $11$

  • C.

    $ -7$

  • D.

    $7$

Đáp án : C

Phương pháp giải :

Bước 1: Thay tọa độ điểm $A$ vào phương trình đường thẳng $d$ để tìm $m$ và đưa phương trình về dạng $y = ax + b$ .

Bước 2: Sử dụng  lý thuyết về hệ số góc của đường thẳng.

Đường thẳng $d$ có phương trình \(y = ax + b\,\left( {a \ne 0} \right)\) $a$ là hệ số góc.

Lời giải chi tiết :

Thay tọa độ điểm $A$ vào phương trình đường thẳng $d$ ta được $\left( {m + 2} \right).\left( { - 1} \right) - 5 = 2 \Leftrightarrow -m-2=7\Leftrightarrow m = -9$

Suy ra $d:y = -7x - 5$

Hệ số góc của đường thẳng $d$ $k = -7$ .

Câu 14 :

Cho tam giác $MNP$ vuông tại $N$. Hệ thức nào sau đây là đúng ?

  • A.

    $MN = MP.\sin P$

  • B.

    $MN = MP.\cos P$

  • C.

    $MN = MP.\tan P$

  • D.

    $MN = MP.\cot P$

Đáp án : A

Lời giải chi tiết :

Ta có $\sin P = \dfrac{{MN}}{{MP}} \Rightarrow MN = MP.\sin P$.

Câu 15 :

Số giao điểm của đường thẳng $d:y = 2x + 4$ và  parabol  $\left( P \right):y = {x^2}$ là:

  • A.

    $2$

  • B.

    $1$

  • C.

    $0$

  • D.

    $3$

Đáp án : A

Phương pháp giải :

Bước 1: Giải phương trình hoành độ giao điểm.

Bước 2: Số nghiệm vừa tìm được của phương trình là số giao điểm của đường thẳng và parabol

Lời giải chi tiết :

Xét phương trình hoành độ giao điểm ${x^2} = 2x + 4 \Leftrightarrow {x^2} - 2x - 4 = 0$ có $\Delta ' = 5 > 0$ nên phương trình có hai nghiệm phân biệt hay đường thẳng cắt parabol tại hai điểm phân biệt.

Câu 16 :

Tìm $m$ để phương trình $2m{x^2} - \left( {2m + 1} \right)x - 3 = 0$ có nghiệm là $x = 2$.

  • A.

    $m =  - \dfrac{5}{4}$

  • B.

    $m = \dfrac{1}{4}$

  • C.

    $m = \dfrac{5}{4}$

  • D.

    $m =  - \dfrac{1}{4}$

Đáp án : C

Phương pháp giải :

Thay $x = {x_0}$ vào phương trình đã cho ta được phương trình ẩn $m$. Giải phương trình ta tìm được $m$.

Lời giải chi tiết :

Thay $x = 2$ vào phương trình $2m{x^2} - \left( {2m + 1} \right)x - 3 = 0$ ta được:

$2m{.2^2} - \left( {2m + 1} \right).2 - 3 = 0 $

$ 4m - 5 = 0$

$m = \dfrac{5}{4}$

Vậy $m = \dfrac{5}{4}$ là giá trị cần tìm.

Câu 17 :

Cho nửa đường tròn \(\left( O \right)\) đường kính \(AB\) và \(C\) là điểm trên cung nhỏ \(AB\) (cung \(CB\) nhỏ hơn cung \(CA\) ). Tiếp tuyến tại \(C\) của nửa đường tròn cắt đường thẳng \(AB\) tại \(D\) . Biết tam giác \(ADC\)  cân tại \(C\) . Tính góc \(ADC\) .

  • A.

    $40^\circ $

  • B.

    $45^\circ $

  • C.

    $60^\circ $

  • D.

    $30^\circ $

Đáp án : D

Phương pháp giải :

Sử dụng góc nội tiếp và góc có đỉnh bên ngoài đường tròn

Lời giải chi tiết :

Xét nửa \(\left( O \right)\) có \(\widehat {BAC} = \dfrac{1}{2}\) sđ \(\overparen{BC}\) (góc nội tiếp chắn cung BC) và \(\widehat {CDA} = \dfrac{1}{2}\) (sđ \(\overparen{AC} - \) sđ \(\overparen{BC}\) ) (góc có đỉnh bên ngoài đường tròn)

Mà \(\Delta ADC\) cân tại \(C\) nên \(\widehat {DAC} = \widehat {CDA} \Leftrightarrow \) sđ \(\overparen{BC} = \) sđ \(\overparen{AC} - \) sđ \(\overparen{BC}\)

Suy ra sđ \(\overparen{AC} = 2\). sđ \(\overparen{BC}\)

Mà sđ \(\overparen{AC} + \) sđ \(\overparen{BC} = 180^\circ \) nên sđ \(\overparen{AC} = 120^\circ \) ; sđ\(\overparen{BC}= 60^\circ \)

Do đó $\widehat {ADC} = 30^\circ $.

Câu 18 :

Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình ${x^2} - 6x + 7 = 0$

  • A.

    $\dfrac{1}{6}$

  • B.

    $3$

  • C.

    $6$

  • D.

    $7$

Đáp án : C

Phương pháp giải :

Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ thì  \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a}\\{x_1} \cdot {x_2} = \dfrac{c}{a}\end{array} \right..\)

Lời giải chi tiết :

Phương trình ${x^2} - 6x + 7 = 0$ có $\Delta  = {\left( { - 6} \right)^2} - 4.1.7 = 8 > 0$ nên phương trình có hai nghiệm ${x_1};{x_2}$

Theo định lí Viète, ta có ${x_1} + {x_2} =  - \dfrac{{ - 6}}{1} = 6$

Câu 19 :

Rút gọn biểu thức  \(5\sqrt a  - 4b\sqrt {25{a^3}}  + 5a\sqrt {16a{b^2}}  - \sqrt {9a} \) với $a \ge 0;b \ge 0$ ta được kết quả là

  • A.

    $2\sqrt {2a} $

  • B.

    $4\sqrt a $

  • C.

    $8\sqrt a $

  • D.

    $2\sqrt a $

Đáp án : D

Phương pháp giải :

Sử dụng công thức đưa thừa số vào trong dấu căn và công thức khai phương một tích để xuất hiện nhân tử chung từ đó thực hiện phép tính.

Đưa thừa số vào trong dấu căn

+) $A\sqrt B  = \sqrt {{A^2}B} $ với $A \ge 0$ và $B \ge 0$

+) $A\sqrt B  =  - \sqrt {{A^2}B} $ với $A < 0$ và $B \ge 0$

Công thức khai phương một tích

$\sqrt {AB}  = \sqrt A .\sqrt B \,\,\left( {A \ge 0;B \ge 0} \right)$

Lời giải chi tiết :

Ta có \(5\sqrt a  - 4b\sqrt {25{a^3}}  + 5a\sqrt {16a{b^2}}  - \sqrt {9a} \)$ = 5\sqrt a  - 4\sqrt {25{a^3}{b^2}}  + 5\sqrt {16a{b^2}.{a^2}}  - \sqrt 9 .\sqrt a $

$ = 5\sqrt a  - 4\sqrt {25} .\sqrt {{a^3}{b^2}}  + 5\sqrt {16} .\sqrt {{a^3}{b^2}}  - 3\sqrt a $$ = \left( {5\sqrt a  - 3\sqrt a } \right) - \left( {4.5\sqrt {{a^3}{b^2}}  - 5.4\sqrt {{a^3}{b^2}} } \right)$$ = 2\sqrt a $

Câu 20 :

Rút gọn biểu thức \(2\sqrt a  - \sqrt {9{a^3}}  + {a^2}\sqrt {\dfrac{{16}}{a}}  + \dfrac{2}{{{a^2}}}\sqrt {36{a^5}} \) với $a > 0$ ta được

  • A.

    $14\sqrt a  + a\sqrt a $

  • B.

    $14\sqrt a  - a\sqrt a $

  • C.

    $14\sqrt a  + 2a\sqrt a $

  • D.

    $20\sqrt a  - 2a\sqrt a $

Đáp án : A

Phương pháp giải :

-Sử dụng công thức khai phương một thương \(\sqrt {\dfrac{A}{B}}  = \dfrac{{\sqrt A }}{{\sqrt B }}\) với \(A \ge 0,B > 0\) và công thức khai phương một tích  \(\sqrt {AB}  = \sqrt A .\sqrt B ,\,\,\left( {A,B \ge 0} \right)\)

-Khử mẫu biểu thức lấy căn theo công thức \(\sqrt {\dfrac{A}{B}}  = \dfrac{{\sqrt {AB} }}{B}\,\left( {A \ge 0,B > 0} \right)\)

-Sử dụng hằng đẳng thức \(\sqrt {{A^2}}  = \left| A \right|\)

-Cộng trừ các căn thức bậc hai.

Lời giải chi tiết :

Với $a>0$ ta có \(2\sqrt a  - \sqrt {9{a^3}}  + {a^2}\sqrt {\dfrac{{16}}{a}}  + \dfrac{2}{{{a^2}}}\sqrt {36{a^5}} \)$ = 2\sqrt a  - \sqrt {9{a^2}.a}  + {a^2}\dfrac{{\sqrt {16a} }}{a} + \dfrac{2}{{{a^2}}}.\sqrt {36{a^4}.a} $

$ = 2\sqrt a  - 3a\sqrt a  + 4a\sqrt a  + \dfrac{2}{{{a^2}}}.6{a^2}\sqrt a $$ = 2\sqrt a  - 3a\sqrt a  + 4a\sqrt a  + 12\sqrt a  = 14\sqrt a  + a\sqrt a $

Câu 21 :

Cho hai đồ thị của hàm số bậc nhất là hai đường thẳng $d:y = \left( {m + 2} \right)x - m$ và $d':y =  - 2x - 2m + 1$. Với giá trị nào của $m$ thì $d$ cắt $d'$?

  • A.

    $m \ne  - 2$

  • B.

    $m \ne  - 4$

  • C.

    $m \ne \left\{ { - 2; - 4} \right\}$

  • D.

    $m \ne \left\{ {2; - 4} \right\}$

Đáp án : C

Phương pháp giải :

+) Tìm điều kiện để hàm số $y=ax+b$ là hàm số bậc nhất là $a\ne 0$

+) Sử dụng vị trí tương đối giữa hai đường thẳng:

Cho hai đường thẳng $d:y = ax + b\,\,\left( {a \ne 0} \right)$ và $d':y = a'x + b'\,\,\left( {a' \ne 0} \right)$.

+) $d{\rm{//}}d' \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.$

+) \(d\) cắt $d'$\( \Leftrightarrow a \ne a'\).

+) \(d \equiv d' \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b = b'\end{array} \right.\).

+) \(d \bot d' \Leftrightarrow a.a' =  - 1\).

Lời giải chi tiết :

+) Ta thấy $d:y = \left( {m + 2} \right)x - m$ có $a = m + 2$ và $d':y =  - 2x - 2m + 1$ có $a' =  - 2$ .

+) Để $y = \left( {m + 2} \right)x - m$ là hàm số bậc nhất thì $m + 2 \ne 0 \Leftrightarrow m \ne  - 2$

+) Để \(d\) cắt $d'$\( \Leftrightarrow a \ne a'\)

$ \Leftrightarrow m + 2 \ne  - 2 \Leftrightarrow m \ne  - 4$

Vậy $m \ne \left\{ { - 2; - 4} \right\}$.

Câu 22 :

Cho hệ phương trình $\left\{ \begin{array}{l}2x + by =  - 1\\bx - 2ay = 1\end{array} \right.$. Biết rằng hệ phương trình có nghiệm là $\left( {1; - 2} \right)$, tính $a - b$.

  • A.

    $\dfrac{{13}}{8}$

  • B.

    $ - \dfrac{{13}}{8}$

  • C.

    $\dfrac{5}{8}$

  • D.

    $ - \dfrac{5}{8}$

Đáp án : B

Phương pháp giải :

Hệ phương trình bậc nhất hai ẩn có nghiệm $\left( {{x_0};{y_0}} \right) \Leftrightarrow \left\{ \begin{array}{l}a{x_0} + b{y_0} = c\\a'{x_0} + b'{y_0} = c'\end{array} \right..$

Lời giải chi tiết :

Thay $x = 1;y =  - 2$ vào hệ ta được

$\left\{ \begin{array}{l}2.1 + b.\left( { - 2} \right) =  - 1\\b.1 - 2a.\left( { - 2} \right) = 1\end{array} \right.$

$\left\{ \begin{array}{l} - 2b =  - 3\\b + 4a = 1\end{array} \right.$

$\left\{ \begin{array}{l}b = \dfrac{3}{2}\\\dfrac{3}{2} + 4a = 1\end{array} \right.$

$\left\{ \begin{array}{l}b = \dfrac{3}{2}\\a =  - \dfrac{1}{8}\end{array} \right.$

$a - b =  - \dfrac{{13}}{8}$

Vậy $a - b =  - \dfrac{{13}}{8}$.

Câu 23 :

Cho hệ phương trình $\left\{ \begin{array}{l}(m - 1)x + y = 2\\mx + y = m + 1\end{array} \right.$ ( $m$ là tham số) . Kết luận nào sau đây là đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình

  • A.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y \le {\rm{3}}$

  • B.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y > {\rm{3}}$

  • C.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y \ge {\rm{3}}$

  • D.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y = {\rm{3}}$

Đáp án : A

Phương pháp giải :

Bước 1: Giải hệ phương trình tìm được nghiệm $\left( {x,y} \right)$ theo tham số $m$

Bước 2: Thay $x,y$ vừa tìm được vào hệ thức yêu cầu để tìm $m$

Lời giải chi tiết :

Từ $\left( {m - 1} \right)x + y = 2$ thế vào phương trình còn lại ta được phương trình:

$mx + 2-\left( {m - 1} \right)x = m + 1 \Leftrightarrow x = m-1$ suy ra $y = 2-{\left( {m - 1} \right)^2}$ với mọi $m$

Vậy hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right) = \left( {m - 1;2-{{\left( {m - 1} \right)}^2}} \right)$

$2x + {\rm{ }}y = 2\left( {m - 1} \right) + 2-{\left( {m - 1} \right)^2} =  - {m^2} + 4m - 1$

$= 3-{\left( {m - 2} \right)^2} \le 3$ với mọi $m$.

Câu 24 :

Một mảnh đất hình chữ nhật có chu vi bằng $42$  m. Đường chéo hình chữ nhật dài $15$  m. Tính độ dài chiều rộng mảnh đất hình chữ nhật.

  • A.

    $10\,\,m$

  • B.

    $12\,\,m$

  • C.

    $9\,\,m$

  • D.

    $8\,\,m$

Đáp án : C

Phương pháp giải :

Giải bài toán có nội dung hình học  bằng cách  lập hệ phương trình.

Chú ý các công thức:

+ Chu vi hình chữ nhật $ = $  ( Chiều dài $ + $  chiều rộng)$.2$

+ Định lý Pitago: " Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông"

Lời giải chi tiết :

Gọi chiều dài  và chiều rộng của mảnh đất  hình chữ nhật lần lượt là $x,y\,\,\left( {21 > x > y > 0;\,m} \right)$

Vì khu vườn hình chữ nhật có chu vi bằng $42$  $m$ nên ta có $\left( {x + y} \right).2 = 42$

Đường chéo hình chữ nhật dài $15$$m$ nên ta có phương trình ${x^2} + {y^2} = {15^2}$

Suy ra hệ phương trình $\left\{ \begin{array}{l}\left( {x + y} \right).2 = 42\\{x^2} + {y^2} = 225\end{array} \right.$

$\left\{ \begin{array}{l}x + y = 21\\{x^2} + {y^2} = 225\end{array} \right.$

$ \left\{ \begin{array}{l}y = 21 - x\\{x^2} + {\left( {21 - x} \right)^2} = 225\,\,\left( 1 \right)\end{array} \right.$

Giải phương trình $\left( 1 \right)$ ta được

$2{x^2} - 42x + 216 = 0 \\ {x^2} - 21x + 108 = 0 \\ \left( {x - 12} \right)\left( {x - 9} \right) = 0 $

$x = 12, y = 9\,\left( N \right)$ hoặc $x = 9, y = 12\,\,\left( L \right)$

Vậy chiều rộng mảnh đất ban đầu là $9\,\,m$.

Câu 25 :

Một canô chạy trên sông trong $7$  giờ, xuôi dòng \(108\,km\) và ngược dòng \(63\,km\) . Một lần khác cũng trong 7 giờ canô xuôi dòng \(81\,km\) và ngược dòng \(84\,km\) . Tính vận tốc nước chảy.

  • A.

    $4\,{\rm{km/h}}$

  • B.

    $3\,{\rm{km/h}}$

  • C.

    $2\,{\rm{km/h}}$

  • D.

    $2,5\,{\rm{km/h}}$

Đáp án : B

Phương pháp giải :

Giải bài toán chuyển động  bằng cách  lập hệ phương trình.

Chú ý: Công thức liên quan đến chuyển động của tàu, cano.. trên dòng nước

Vận tốc xuôi dòng $ = $ vận tốc ca nô (tàu) $ + $ vận tốc dòng nước

Vận tốc ngược dòng $ = $ vận tốc ca nô (tàu) $ - $ vận tốc dòng nước

Lời giải chi tiết :

Gọi vận tốc thực của canô là $x\,\,\left( {{\rm{km/h}},x > 0} \right)$, vận tốc dòng nước là $y\,\,\left( {{\rm{km/h}},0 < y < x} \right)$

Vận tốc cano khi xuôi dòng là $x + y\,\,\left( {{\rm{km/h}}} \right)$, vận tốc cano khi ngược dòng là $x - y\,\,\left( {{\rm{km/h}}} \right)$

Canô chạy trên sông trong $7$  giờ, xuôi dòng \(108\,km\) và ngược dòng \(63\,km\) nên ta có phương trình

$\dfrac{{108}}{{x + y}} + \dfrac{{63}}{{x - y}} = 7$

Canô chạy trên sông trong $7$  giờ canô xuôi dòng \(81\,km\) và ngược dòng \(84\,km\) nên ta có phương trình

$\dfrac{{81}}{{x + y}} + \dfrac{{84}}{{x - y}} = 7$

Ta có hệ phương trình

$\left\{ \begin{array}{l}\dfrac{{108}}{{x + y}} + \dfrac{{63}}{{x - y}} = 7\\\dfrac{{81}}{{x + y}} + \dfrac{{84}}{{x - y}} = 7\end{array} \right.$

Đặt \(a = \frac{1}{x+y}, b = \frac{1}{x-y}\), hệ phương trình trở thành:

$\left\{ \begin{array}{l}108a + 63b = 7\\81a + 84b = 7\end{array} \right.$

Nhân phương trình thứ nhất với 4, nhân phương trình thứ hai với 3, ta được:

$\left\{ \begin{array}{l}432a + 252b = 28\\243a + 252b = 21\end{array} \right.$

Trừ hai vế của phương trình thứ nhất cho phương trình thứ hai, ta được:

$432a + 252b - \left(243a + 252b \right) = 28 - 21$ $189a = 7$

$a = \frac{1}{27}$, thay vào $81a + 84b = 7$ ta được $b = \frac{1}{21}$

Suy ra $x + y = 27;x - y = 21$

Ta tính được \(x = \frac{27 + 21}{2} = 24; y = \frac{27 - 21}{2} = 3\) (TM)

Vậy vận tốc dòng nước là $3\,\,{\rm{km/h}}.$

Câu 26 :

Cho phương trình \(\left( {m - 3} \right){x^2} - 2mx + m - 6 = 0\). Tìm các giá trị của $m$ để phương trình vô nghiệm

  • A.

    $m <  - 2$

  • B.

    $m < 2$

  • C.

    $m < 3$

  • D.

    $m <  - 3$

Đáp án : B

Phương pháp giải :

Xét phương trình bậc hai dạng $a{x^2} + bx + c = 0$ với $b = 2b'$

TH1: $a = 0$

TH2: $a \ne 0$. Khi đó, p hương trình vô nghiệm\( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' < 0\end{array} \right.\)

Lời giải chi tiết :

Phương trình \(\left( {m - 3} \right){x^2} - 2mx + m - 6 = 0\) có $a = m - 3;b' =  - m;c = m - 6$

Suy ra $\Delta ' = {m^2} - \left( {m - 3} \right)\left( {m - 6} \right) = 9m - 18$

TH1: $m - 3 = 0 \Leftrightarrow m = 3 \Rightarrow  - 6x - 3 = 0 \Leftrightarrow x =  - \dfrac{1}{2}$

TH2: $m - 3 \ne 0 \Leftrightarrow m \ne 3$

Để phương trình có vô nghiệm phân biệt thì $\left\{ \begin{array}{l}a \ne 0\\\Delta ' < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 3\\9m - 18 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 3\\m < 2\end{array} \right. \Rightarrow m < 2$

Vậy $m < 2$ là giá trị cần tìm.

Câu 27 :

Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 3} \right)x + 8 - 4m = 0\) có hai nghiệm âm phân biệt.

  • A.

    $m < 2$ và $m \ne 1$

  • B.

    $m < 3$

  • C.

    $m <2$

  • D.

    $m > 0$

Đáp án : A

Phương pháp giải :

Xét phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm âm phân biệt khi \(\Delta  > 0\) (\(\Delta ' > 0\)), \(P > 0\) và \(S < 0\).

Lời giải chi tiết :

Phương trình \({x^2} - 2\left( {m - 3} \right)x + 8 - 4m = 0\) có $ {a = 1;b' =  - \left( {m - 3} \right);c = 8 - 4m} $

Ta có $\Delta ' = {\left( {m - 3} \right)^2} - \left( {8 - 4m} \right) $$= {m^2} - 2m + 1 = {\left( {m - 1} \right)^2}$;

Áp dụng định lí Viète, ta có: $S = {x_1} + {x_2} = 2\left( {m - 3} \right);$$P = {x_1}.{x_2} = 8 - 4m$

Phương trình có hai nghiệm âm phân biệt khi:

+) \(\Delta ' > 0\) hay \({\left( {m - 1} \right)^2} > 0\) suy ra \(m \ne 1\)

+) $S = {x_1} + {x_2} < 0$ hay $2\left( {m - 3} \right) < 0$ suy ra $m < 3$

+) $P = {x_1}.{x_2} > 0$ hay $8 - 4m > 0$ suy ra \(m < 2\)

Kết hợp 3 điều kiện trên, ta được \(m \ne 1\) và \(m < 2\)

Vậy $m < 2$ và $m \ne 1$ là giá trị cần tìm.

Câu 28 :

Biết rằng phương trình  $\left( {m - 2} \right){x^2} - \left( {2m + 5} \right)x + m + 7 = 0\,\left( {m \ne 2} \right)$ luôn có nghiệm ${x_1};{x_2}$ với mọi $m$. Tìm ${x_1};{x_2}$ theo $m$.

  • A.

    ${x_1} =  - 1;{x_2} =  - \dfrac{{m + 7}}{{m - 2}}$

  • B.

    ${x_1} = 1;{x_2} =  - \dfrac{{m + 7}}{{m - 2}}$

  • C.

    ${x_1} = 1;{x_2} = \dfrac{{m + 7}}{{m - 2}}$

  • D.

    ${x_1} =  - 1;{x_2} = \dfrac{{m + 7}}{{m - 2}}$

Đáp án : C

Phương pháp giải :

Sử dụng cách nhẩm nghiệm:

Xét phương trình bậc hai $a{x^2} + bx + c = 0{\rm{ }}\left( {a \ne 0} \right)$.

+) Nếu phương trình có $a + b + c = 0$ thì phương trình có một nghiệm ${x_1} = 1$, nghiệm kia là ${x_2} = \dfrac{c}{a}.$

+ ) Nếu phương trình có $a - b + c = 0$ thì phương trình có một nghiệm ${x_1} =  - 1$, nghiệm kia là ${x_2} =  - \dfrac{c}{a}.$

Lời giải chi tiết :

Phương trình $\left( {m - 2} \right){x^2} - \left( {2m + 5} \right)x + m + 7 = 0$ có $a = m - 2;b =  - 2m - 5;c = m + 7$

Vì $a + b + c = m - 2 - 2m - 5 + m + 7 = 0$ nên phương trình có hai nghiệm ${x_1} = 1;{x_2} = \dfrac{{m + 7}}{{m - 2}}$.

Câu 29 :

Số nghiệm của phương trình \(3{x^3} + 3{x^2} + 5x + 5 = 0\) là:

  • A.

    $2$

  • B.

    $0$

  • C.

    $1$

  • D.

    $3$

Đáp án : C

Lời giải chi tiết :

Ta có \(3{x^3} + 3{x^2} + 5x + 5 = 0\)$ \Leftrightarrow 3{x^2}\left( {x + 1} \right) + 5\left( {x + 1} \right) = 0 \Leftrightarrow \left( {3{x^2} + 5} \right)\left( {x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}3{x^2} + 5 = 0\\x + 1 = 0\end{array} \right.$

$ \Leftrightarrow \left[ \begin{array}{l}3{x^2} =  - 5\left( L \right)\\x =  - 1\end{array} \right. \Rightarrow x =  - 1$

Vậy phương trình có nghiệm duy nhất $x =  - 1$.

Câu 30 :

Một ca nô chạy xuôi dòng với quãng đường $42{\rm{km}}$, rồi sau đó ngược dòng trở lại $20{\rm{ km}}$ hết tổng cộng $5{\rm{h}}$. Biến vận tốc của dòng nước chảy là $2{\rm{ km/h}}$. Tính vận tốc của ca nô lúc dòng nước yên lặng.

  • A.

    $11{\rm{ }}\left( {{\rm{km/h}}} \right)$

  • B.

    $12{\rm{ }}\left( {{\rm{km/h}}} \right)$

  • C.

    $14{\rm{ }}\left( {{\rm{km/h}}} \right)$

  • D.

    $15{\rm{ }}\left( {{\rm{km/h}}} \right)$

Đáp án : B

Lời giải chi tiết :

Gọi vận tốc của ca nô lúc dòng nước yên lặng là $x{\rm{ }}\left( {{\rm{km/h}}} \right);\left( {x > {\rm{2}}} \right)$

Vì vận tốc nước là $2{\rm{ km/h}}$  nên vận tốc xuôi dòng và ngược dòng lần lượt là $x{\rm{ }} + {\rm{ }}2$ và $x{\rm{  -  }}2{\rm{ }}\left( {{\rm{km/h}}} \right)$

Thời gian để ca nô đi hết $42{\rm{ km}}$  xuôi dòng là $\dfrac{{42}}{{x + 2}}{\rm{(h)}}$

Thời gian để ca nô đi hết $20{\rm{ km}}$  ngược dòng là $\dfrac{{20}}{{x - 2}}{\rm{(h)}}$

Tổng thời gian là $5{\rm{h}}$  do đó

$\dfrac{{42}}{{x + 2}} + \dfrac{{20}}{{x - 2}} = 5 \Leftrightarrow \dfrac{{42(x - 2) + 20(x + 2)}}{{(x - 2)(x + 2)}} = 5 \Leftrightarrow \dfrac{{62x - 44}}{{{x^2} - 4}} = 5$

$ \Rightarrow 5{x^2} - 62x + 24 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 12{\rm{(TM)}}\\x = 0,4{\rm{(L)}}\end{array} \right.$

Vậy vận tốc của ca nô khi nước yên lặng là $12{\rm{ km/h}}$ .

Câu 31 :

Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Đường tròn đường kính $BH$ cắt $AB$ tại $D$, đường tròn đường kính $CH$ cắt $AC$ tại $E$ . Chọn khẳng định sai trong các khẳng định sau

  • A.

    $DE$ là cát tuyến của đường tròn đường kính $BH$

  • B.

    $DE$ là tiếp tuyến của đường tròn đường kính $BH$

  • C.

    Tứ giác$AEHD$ là hình chữ nhật

  • D.

    $DE \bot DI$ (với $I$ là trung điểm $BH$)

Đáp án : A

Phương pháp giải :

Sử dụng dấu hiệu nhận biết các hình đặc biệt và cách chứng minh một đường thẳng là tiếp tuyến của đường tròn.

Lời giải chi tiết :

Gọi $I$, $J$ lần lượt là trung điểm của $BH$ và $CH.$

Để chứng minh $DE$ là tiếp tuyến của đường tròn tâm $I$ đường kính $BH$ ta chứng minh

\(ID \bot DE\) hay $\widehat {ODI} = {90^o}$

Vì $D,E$ lần lượt thuộc đường tròn đường kính $BH$ và $HC$ nên ta có: $\widehat {BDH} = \widehat {CEH} = {90^0}$

Suy ra tứ giác $ADHE$ là hình chữ nhật.

Gọi $O$ là giao điểm của $AH$ và$DE$, khi đó ta có $OD = OH = OE = OA$ .

Suy ra $\Delta ODH$ cân tại $O \Rightarrow \widehat {ODH} = \widehat {OHD}$

Ta cũng có $\Delta IDH$ cân tại $I$$ \Rightarrow \widehat {IDH} = \widehat {IHD}$

Từ đó $ \Rightarrow \widehat {IDH} + \widehat {HDO} = \widehat {IHD} + \widehat {DHO} \Rightarrow \widehat {IDO} = 90^\circ $$ \Rightarrow ID \bot DE$

Ta có \(ID \bot DE,D \in \left( I \right)\) nên  $DE$ là tiếp tuyến của đường tròn đường kính $BH$.

Từ chứng minh trên suy ra các phương án B,C,D đúng.

Câu 32 :

Cho đường tròn $(O).$ Từ một điểm $M$ ở ngoài $(O)$, vẽ hai tiếp tuyến $MA$ và $MB$ sao cho góc $AMB$ bằng ${120^0}$. Biết chu vi tam giác $MAB$ là $6\left( {3 + 2\sqrt 3 } \right)cm$, tính độ dài dây $AB.$

  • A.

    $18\,cm$

  • B.

    $6\sqrt 3 cm$

  • C.

    $12\sqrt 3 \,cm$

  • D.

    $15\,cm$

Đáp án : A

Phương pháp giải :

Sử dụng tính chất hai tiếp tuyến cắt nhau và công thức chu vi tam giác

Lời giải chi tiết :

Xét $\left( O \right)$ có $MA = MB$; $\widehat {AMO} = \widehat {BMO}$ (tính chất hai tiếp tuyến cắt nhau)

Nên $\widehat {AMO} = 60^\circ $. Xét tam giác vuông $AOM$ có $AM = AO.cot\widehat {AMO} = \dfrac{{R\sqrt 3 }}{3}$ nên $MA = MB = \dfrac{{R\sqrt 3 }}{3}$

Lại có $\widehat {AOB} + \widehat {AMB} = 180^\circ  \Rightarrow \widehat {AOB} = 60^\circ $ suy ra $\Delta AOB$ là tam giác đều $ \Rightarrow AB = OB = OA = R$

Chu vi tam giác $MAB$ là $MA + MB + AB = \dfrac{{R\sqrt 3 }}{3} + \dfrac{{R\sqrt 3 }}{3} + R = 6\left( {3 + 2\sqrt 3 } \right)$

hay $ R\left( {\dfrac{{3 + 2\sqrt 3 }}{3}} \right) = 6\left( {3 + 2\sqrt 3 } \right) \Rightarrow R = 18\,cm$ nên $AB = 18\,cm$.

Câu 33 :

Cho hai đường tròn $\left( {O;20cm} \right)$ và $\left( {O';15cm} \right)$ cắt nhau tại $A$ và$B$. Tính đoạn nối tâm $OO'$, biết rằng$AB = 24cm$ và $O$ và $O'$ nằm cùng phía đối với $AB$ .

  • A.

    $OO' = 7cm$

  • B.

    $OO' = 8cm$

  • C.

    $OO' = 9cm$

  • D.

    $OO' = 25cm$

Đáp án : A

Phương pháp giải :

Sử dụng tính chất đường nối tâm của hai đường tròn cắt nhau và định lý Pytago

Lời giải chi tiết :

Ta có: $AI = \dfrac{1}{2}AB = 12\,\ cm$

Theo định lý Pytago ta có

$O{I^2} = O{A^2}-A{I^2} = 256$ $ \Rightarrow $ $OI = 16 \,\ cm$ $O'I = \sqrt {O'{A^2} - I{A^2}}  = 9 \,\ cm$

Do đó: $OO' = OI-O'I = 16-9 = 7\left( {cm} \right)$ .

Câu 34 :

Cho đường  tròn $(O)$ và hai dây cung $AB,AC$ bằng nhau. Qua $A$ vẽ một cát tuyến cắt dây $BC$ ở $D$ và cắt $(O)$ ở $E$.  Khi đó \(A{B^2}\) bằng

  • A.

    \(AD.AE\)

  • B.

    \(AD.AC\)

  • C.

    \(AE.BE\)

  • D.

    \(AD.BD\)

Đáp án : A

Phương pháp giải :

Sử dụng hệ quả của góc nội tiếp để chứng minh các góc bằng nhau và suy ra tam giác đồng dạng

Từ đó có hệ thức cần chứng minh.

Lời giải chi tiết :

Xét \(\left( O \right)\) có \(\widehat {AEB} = \widehat {ABC}\) (hai góc nội tiếp chắn hai cung bằng nhau \(AB = AC\) )

Xét \(\Delta ABD\) và \(\Delta AEB\) có \(\widehat A\) chung và \(\widehat {AEB} = \widehat {ABC}\) (cmt) nên \(\Delta ABD\backsim\Delta AEB\left( {g - g} \right) \Rightarrow \dfrac{{AB}}{{AE}} = \dfrac{{AD}}{{AB}} \Rightarrow A{B^2} = AE.AD\)

Câu 35 :

Cho tam giác nhọn \(ABC\)  nội tiếp \(\left( O \right)\) . Kẻ tiếp tuyến \(xAy\) với \(\left( O \right)\) . Từ \(B\) kẻ \(BM{\rm{//}}xy\left( {M \in AC} \right)\) . Khi đó tích $AM.AC$ bằng

  • A.

    \(A{B^2}\)

  • B.

    \(B{C^2}\)

  • C.

    \(A{C^2}\)

  • D.

    \(A{M^2}\)

Đáp án : A

Phương pháp giải :

Sử dụng  hệ quả về góc tạo bởi tiếp tuyến và dây cung để chứng minh các góc bằng nhau

Lời giải chi tiết :

Ta có \(\widehat {yAB} = \widehat {ACB}\) (hệ quả) mà \(\widehat {yAB} = \widehat {ABM}\) (so le trong) nên \(\widehat {ACB} = \widehat {ABM} \Rightarrow \Delta AMB\backsim\Delta ABC\left( {g - g} \right)\)

\(\dfrac{{AM}}{{AB}} = \dfrac{{AB}}{{AC}} \Rightarrow AM.AC = A{B^2}\) .

Câu 36 :

Cho đường tròn $\left( O \right)$ đường kính $AB$. Gọi $I$ là trung điểm của $OA$ . Dây $CD$ vuông góc với $AB$ tại $I$. Lấy $K$ tùy ý trên cung $BC$ nhỏ, $AK$ cắt $CD$ tại $H$. Khẳng định nào đúng ?

  • A.

    Tứ giác $BIHK$ nội tiếp.

  • B.

    Tứ giác $BIHK$ không nội tiếp.

  • C.

    Tứ giác $BIHK$ là hình chữ nhật.

  • D.

    Các đáp án trên đều sai.

Đáp án : A

Phương pháp giải :

Góc nội tiếp chắn nửa đường tròn là góc vuông.

Tứ giác có bốn đỉnh nằm trên một đường tròn được gọi là tứ giác nội tiếp đường tròn.

Lời giải chi tiết :

Ta có: \(\widehat {AKB}\) là góc nội tiếp chắn nửa đường tròn (O) suy ra \( \widehat {AKB} = {90^0}.\)

Tam giác HKB có \(\widehat {HKB} = {90^0}\) và tam giác HIB có \(\widehat {HIB} = {90^0}\left( {do\;\;CD \bot AB } \right)\) nên tam giác HKB và tam giác HIB vuông và nội tiếp đường tròn đường kính HB.

Do đó tứ giác HKBI là tứ giác nội tiếp (bốn đỉnh H, K, B, I cùng thuộc đường tròn đường kính HB).

Vậy A đúng, B sai.

Lại có \(\widehat {KBA} < {90^0}\) do \(\Delta AKB\) vuông tại \(K\) nên \(KBIH\) không là hình chữ nhật. Do đó C sai.

Câu 37 :

Cho \(\Delta ABC\) vuông ở $A$ . Trên cạnh $AC$ lấy điểm $M$ và vẽ đường tròn đường kính $MC$ . Kẻ $BM$ cắt đường tròn tại $D$ . Đường thẳng $DA$ cắt đường tròn tại $S$ . Chọn đáp án sai trong các đáp án sau:

  • A.

    Tứ giác $ABCD$ nội tiếp.

  • B.

    \(\widehat {ABD} = \widehat {ACD}\)

  • C.

    $CA$ là phân giác của \(\widehat {SCB}.\)

  • D.

    Tứ giác $ABCS$ nội tiếp.

Đáp án : D

Phương pháp giải :

Góc nội tiếp chắn nửa đường tròn là góc vuông.

Dấu hiệu nhận biết tứ giác nội tiếp:

+) Tứ giác có tổng hai góc đối diện bằng \({180^0}.\)

+) Tứ giác có hai đỉnh kề một cạnh cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc \(\alpha .\)

+) Tứ giác có bốn đỉnh cách đều một điểm, điểm đó là tâm của đường tròn ngoại tiếp tứ giác.

+) Tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó.

Lời giải chi tiết :

+) Ta có: \(\widehat {MDC}\) là góc nội tiếp chắn nửa đường tròn đường kính $MC$ \( \Rightarrow \widehat {MDC} = {90^0}\) (tính chất góc nội tiếp).

Xét tứ giác $ABCD$ ta có:

Góc $BAC$ và góc $BDC$ cùng nhìn đoạn $BC$ dưới góc \({90^0}.\)

\( \Rightarrow \) $ABCD$ là tứ giác nội tiếp (dhnb) \( \Rightarrow \) phương án A đúng.

+) Xét tứ giác $ABCD$ nội tiếp ta có\(\widehat {ABD} = \widehat {ACD}\) (cùng nhìn đoạn $AD$ )\( \Rightarrow \) phương án B đúng.

+) Xét đường tròn đường kính $MC$ ta có $4$  điểm $M,C,D,S$ cùng thuộc đường tròn.

\( \Rightarrow \) Tứ giác $MCSD$ là tứ giác nội tiếp.

\( \Rightarrow \widehat {ADM} = \widehat {SCM}\) (góc ngoài tại $1$  đỉnh bằng góc trong tại đỉnh đối diện). $\left( 1 \right)$

Vì tứ giác $ABCD$ nội tiếp (cmt) \( \Rightarrow \widehat {ACB} = \widehat {ADB}\) (cùng nhìn đoạn$AB$ )    $\left( 2 \right)$

Từ $\left( 1 \right)$ và $\left( 2 \right)$ \( \Rightarrow \widehat {BCA} = \widehat {ACS}\;\;\;\left( { = \widehat {ADB}} \right).\)

Hay $CA$ là phân giác của \(\widehat {SCB} \Rightarrow \) phương án C đúng.

+) Giả sử tứ giác $ABCS$ là tứ giác nội tiếp \( \Rightarrow \widehat {ASB} = \widehat {BCA}\) (hai góc cùng nhìn đoạn $AB$ ).

Mà \(\widehat {ACB} = \widehat {BDA};\;\;\;\widehat {BAD} \ne \widehat {BSA}\) (xét trong đường tròn đường kính $CM$ )

\( \Rightarrow \widehat {ASB} \ne \widehat {BCA} \Rightarrow \) tứ giác $ABCS$ không là tứ giác nội tiếp \( \Rightarrow \)phương án D sai.

Câu 38 :

Cho tam giác đều \(ABC\) nội tiếp đường tròn \(\left( O \right)\). Độ dài của các cung \(AB,BC,CA\) đều bằng \(4\pi \). Diện tích của tam giác đều \(ABC\) là:

  • A.

    \(27\sqrt 3 \) $cm^2$

  • B.

    \(7\sqrt 3 \) $cm^2$

  • C.

    \(29\sqrt 3 \) $cm^2$

  • D.

    \(9\sqrt 3 \) $cm^2$

Đáp án : A

Phương pháp giải :

+ Áp dụng công thức tính chu vi hình tròn

+ Tính chất của tam giác cân

+ Sử dụng định lý Pitago

+ Sử dụng công thức tính diện tích tam giác

Lời giải chi tiết :

Gọi \(R\) là bán kính của đường tròn \(\left( O \right)\).  Độ dài của các cung \(AB,BC,CA\) đều bằng \(4\pi \) nên ta có \(C = 2\pi R = 4\pi  + 4\pi  + 4\pi  = 12\pi \), suy ra \(R = 6\) hay \(OA = OB = OC = 6\)

Ta cũng có  \(\widehat {AOB} = \widehat {BOC} = \widehat {COA} = {120^0}\) suy ra \(\Delta AOB = \Delta AOC = \Delta BOC = \dfrac{1}{3}\Delta ABC\)

Xét tam giác \(AOC\) có: \(\left\{ \begin{array}{l}\widehat {OAC} = \widehat {OCA} = {30^0}\\\widehat {COA} = {120^0}\end{array} \right.\)

Kẻ đường cao$OE$ , ta có đồng thời là đường trung tuyến, phân giác của góc \(\widehat {COA}\) . Ta có  \(\widehat {AOE} = \widehat {COE} = \dfrac{1}{2}\widehat {AOC}\)

Xét tam giác $COE$ có:       \(\left\{ \begin{array}{l}\widehat {ECO} = {30^0}\\\widehat {CEO} = {90^0}\end{array} \right. \Rightarrow OE = \dfrac{1}{2}CO = \dfrac{R}{2}\)

Áp dụng định lý Pytago ta có: \(CE = \sqrt {O{C^2} - O{E^2}}  = \sqrt {{R^2} - {{\left( {\dfrac{R}{2}} \right)}^2}}  = \dfrac{{\sqrt 3 }}{2}R\)

Vậy \({S_{COE}} = \dfrac{1}{2}OE.CE = \dfrac{1}{2}.\dfrac{R}{2}.\dfrac{{\sqrt 3 R}}{2} = \dfrac{{\sqrt 3 {R^2}}}{8}\)

Suy ra   \({S_{COA}} = 2{S_{COE}} = \dfrac{{\sqrt 3 {R^2}}}{4}\) và   \({S_{ABC}} = 3{S_{COA}} = \dfrac{{3\sqrt 3 {R^2}}}{4} = \dfrac{{3\sqrt 3 {R^2}}}{4} = 27\sqrt 3 \,\ cm^2 .\)


Cùng chủ đề:

Đề kiểm tra học kì 1 Toán 9 - Đề số 27
Đề kiểm tra học kì 1 Toán 9 - Đề số 28
Đề kiểm tra học kì 1 Toán 9 - Đề số 29
Đề kiểm tra học kì 1 Toán 9 - Đề số 30
Đề kiểm tra học kì 2 Toán 9 - Đề số 1
Đề kiểm tra học kì 2 Toán 9 - Đề số 2
Đề kiểm tra học kì 2 Toán 9 - Đề số 3
Đề kiểm tra học kì 2 Toán 9 - Đề số 4
Đề kiểm tra học kì 2 Toán 9 - Đề số 5
Đề ôn tập học kì 2 toán lớp 9 có đáp án và lời giải chi tiết
Đề ôn tập học kì 2 toán lớp 9 có đáp án và lời giải chi tiết