Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo — Không quảng cáo

Đề thi, đề kiểm tra Toán lớp 7 - Chân trời sáng tạo Đề thi học kì 2 Toán 7 Chân trời sáng tạo


Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo

Tải về

Tải về đề thi và đáp án Tải về đề thi Tải về đáp án

Phần trắc nghiệm (3 điểm) Em hãy chọn phương án trả lời đúng Câu 1: Trong các phát biểu sau, phát biểu nào đúng?

Đề bài

I. Trắc nghiệm
Câu 1 :

Trong các phát biểu sau, phát biểu nào đúng?

  • A.
    \(\frac{1}{2} = \frac{{ - 2}}{4}\).
  • B.
    \(\frac{1}{2} = \frac{5}{{10}}\).
  • C.
    \(\frac{1}{2} = \frac{3}{4}\).
  • D.
    \(\frac{1}{2} = \frac{{ - 2}}{{ - 6}}\).
Câu 2 :

Giá trị x thoả mãn tỉ lệ thức: \(\frac{6}{x} = \frac{{ - 10}}{5}\)

  • A.
    \( - 30.\)
  • B.
    \( - 3.\)
  • C.
    \(3 \cdot \)
  • D.
    \(30.\)
Câu 3 :

Trong các công thức sau, công thức nào phát biểu: “Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ 2”?

  • A.
    \(y = 2x.\)
  • B.
    \(y = \frac{2}{x}.\)
  • C.
    \(y = x + 2.\)
  • D.
    \(y = {x^2}.\)
Câu 4 :

Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài)

  • A.
    \(ab.\)
  • B.
    \(ah.\)
  • C.
    \((a + b)h.\)
  • D.
    \(\frac{{(a + b)h}}{2}.\)
Câu 5 :

Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là

  • A.
    \( - 22.\)
  • B.
    \( - 1.\)
  • C.
    \(5.\)
  • D.
    \(22.\)
Câu 6 :

Giá trị của đa thức \(g\left( x \right) = {x^8}{\rm{ + }}{x^4} + {x^2} + 1\) tại \(x =  - 1\) bằng

  • A.
    \( - 4.\)
  • B.
    \( - 3.\)
  • C.
    \(3.\)
  • D.
    \(4.\)
Câu 7 :

Trong các biến cố sau, biến cố nào là biến cố ngẫu nhiên?

  • A.
    Trong điều kiện thường nước sôi ở \({100^o}C.\)
  • B.
    Tháng tư có 30 ngày.
  • C.
    Gieo một con xúc xắc 1 lần, số chấm xuất hiện trên mặt con xúc xắc là 7.
  • D.
    Gieo hai con xúc xắc 1 lần, tổng số chấm xuất hiện trên hai con xúc xắc là 7.
Câu 8 :

Gieo một đồng xu cân đối, đồng chất 1 lần. Xác suất của biến cố “Đồng xu xuất hiện mặt ngửa” là

  • A.
    \(\frac{1}{4}.\)
  • B.
    \(\frac{1}{3}.\)
  • C.
    \(\frac{1}{2}.\)
  • D.
    \(1.\)
Câu 9 :

Cho \(\Delta ABC\) vuông tại A có \(\widehat B = {65^0}.\) Chọn khẳng định đúng.

  • A.
    \(AB < BC < AC.\)
  • B.
    \(BC > AC > AB.\)
  • C.
    \(BC < AC < AB.\)
  • D.
    \(AC < AB < BC.\)
Câu 10 :

Cho tam giác \(ABC\) có AM là đường trung tuyến, trọng tâm \(G\). Khẳng định nào sau đây đúng?

  • A.
    \(AM = 3AG.\)
  • B.
    \(AG = 2GM.\)
  • C.
    \(3AM = 2AG.\)
  • D.
    \(AG = \frac{1}{2}GM.\)
Câu 11 :

Bộ ba số nào là độ dài ba cạnh của một tam giác?

  • A.
    \(4cm,\;5cm,\;10cm.\)
  • B.
    \(5cm,\;5cm,\;12cm.\)
  • C.
    \(11cm,\;11cm,\;20cm.\)
  • D.
    \(9cm,\;20cm,\;11cm.\)
Câu 12 :

Cho \(\Delta ABC\) có \(\widehat A = {35^0};\widehat B = {45^0}\). Số đo góc C là:

  • A.
    \({70^0}\).
  • B.
    \({80^0}\).
  • C.
    \({90^0}\).
  • D.
    \({100^0}\).
II. Tự luận

Lời giải và đáp án

I. Trắc nghiệm
Câu 1 :

Trong các phát biểu sau, phát biểu nào đúng?

  • A.
    \(\frac{1}{2} = \frac{{ - 2}}{4}\).
  • B.
    \(\frac{1}{2} = \frac{5}{{10}}\).
  • C.
    \(\frac{1}{2} = \frac{3}{4}\).
  • D.
    \(\frac{1}{2} = \frac{{ - 2}}{{ - 6}}\).

Đáp án : B

Phương pháp giải :

Dựa vào kiến thức về tỉ lệ thức.

Lời giải chi tiết :

Ta có:

\(\frac{1}{2} = \frac{2}{4} \ne \frac{{ - 2}}{4}\) nên A sai.

\(\frac{1}{2} = \frac{5}{{10}}\) nên B đúng.

\(\frac{1}{2} = \frac{2}{4} \ne \frac{3}{4}\) nên C sai.

\(\frac{1}{2} = \frac{{ - 3}}{{ - 6}} \ne \frac{{ - 2}}{{ - 6}}\) nên D sai.

Đáp án B.

Câu 2 :

Giá trị x thoả mãn tỉ lệ thức: \(\frac{6}{x} = \frac{{ - 10}}{5}\)

  • A.
    \( - 30.\)
  • B.
    \( - 3.\)
  • C.
    \(3 \cdot \)
  • D.
    \(30.\)

Đáp án : B

Phương pháp giải :

Dựa vào kiến thức về tỉ lệ thức: Nếu \(\frac{a}{b} = \frac{c}{d}\) thì \(ad = bc\).

Lời giải chi tiết :

Ta có: \(\frac{6}{x} = \frac{{ - 10}}{5}\) nên

\(\begin{array}{l}6.5 = \left( { - 10} \right).x\\x = \frac{{6.5}}{{ - 10}}\\x =  - 3\end{array}\)

Đáp án B.

Câu 3 :

Trong các công thức sau, công thức nào phát biểu: “Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ 2”?

  • A.
    \(y = 2x.\)
  • B.
    \(y = \frac{2}{x}.\)
  • C.
    \(y = x + 2.\)
  • D.
    \(y = {x^2}.\)

Đáp án : A

Phương pháp giải :

Sử dụng kiến thức về hai đại lượng tỉ lệ thuận: Nếu đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là a thì ta có công thức \(y = ax\)

Lời giải chi tiết :

Đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ 2 nên y = 2x.

Đáp án A.

Câu 4 :

Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài)

  • A.
    \(ab.\)
  • B.
    \(ah.\)
  • C.
    \((a + b)h.\)
  • D.
    \(\frac{{(a + b)h}}{2}.\)

Đáp án : D

Phương pháp giải :

Sử dụng công thức tính diện tích hình thang để viết biểu thức.

Lời giải chi tiết :

Biểu thức đại số biểu diễn công thức tính diện tích hình thang có 2 đáy độ dài a, b; chiều cao h ( a, b, h có cùng đơn vị đo độ dài) là: \(\frac{{\left( {a + b} \right).h}}{2}\).

Đáp án D.

Câu 5 :

Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là

  • A.
    \( - 22.\)
  • B.
    \( - 1.\)
  • C.
    \(5.\)
  • D.
    \(22.\)

Đáp án : A

Phương pháp giải :

Hệ số của hạng tử bậc 0 gọi là hệ số tự do của đa thức đó.

Lời giải chi tiết :

Hệ số tự do của đa thức \( - {x^7} + 5{x^5} - 12x - 22\) là – 22.

Đáp án A.

Câu 6 :

Giá trị của đa thức \(g\left( x \right) = {x^8}{\rm{ + }}{x^4} + {x^2} + 1\) tại \(x =  - 1\) bằng

  • A.
    \( - 4.\)
  • B.
    \( - 3.\)
  • C.
    \(3.\)
  • D.
    \(4.\)

Đáp án : D

Phương pháp giải :

Thay \(x =  - 1\) vào đa thức để tính giá trị.

Lời giải chi tiết :

Thay \(x =  - 1\) vào đa thức g(x) ta được:

\(g\left( x \right) = {\left( { - 1} \right)^8}{\rm{ + }}{\left( { - 1} \right)^4} + {\left( { - 1} \right)^2} + 1 = 1 + 1 + 1 + 1 = 4\)

Đáp án D.

Câu 7 :

Trong các biến cố sau, biến cố nào là biến cố ngẫu nhiên?

  • A.
    Trong điều kiện thường nước sôi ở \({100^o}C.\)
  • B.
    Tháng tư có 30 ngày.
  • C.
    Gieo một con xúc xắc 1 lần, số chấm xuất hiện trên mặt con xúc xắc là 7.
  • D.
    Gieo hai con xúc xắc 1 lần, tổng số chấm xuất hiện trên hai con xúc xắc là 7.

Đáp án : D

Phương pháp giải :

Dựa vào kiến thức về các loại biến cố.

Lời giải chi tiết :

Biến cố “Gieo hai con xúc xắc 1 lần, tổng số chấm xuất hiện trên hai con xúc xắc là 7” là biến cố ngẫu nhiên.

Đáp án D.

Câu 8 :

Gieo một đồng xu cân đối, đồng chất 1 lần. Xác suất của biến cố “Đồng xu xuất hiện mặt ngửa” là

  • A.
    \(\frac{1}{4}.\)
  • B.
    \(\frac{1}{3}.\)
  • C.
    \(\frac{1}{2}.\)
  • D.
    \(1.\)

Đáp án : C

Phương pháp giải :

Dựa vào kiến thức về xác suất của các biến cố đồng khả năng.

Lời giải chi tiết :

Do đồng xu cân đối nên biến cố “Đồng xu xuất hiện mặt ngửa” và “Đồng xu xuất hiện mặt sấp” là đồng khả năng nên xác suất của 2 biến cố này bằng nhau và bằng \(\frac{1}{2}\).

Đáp án C.

Câu 9 :

Cho \(\Delta ABC\) vuông tại A có \(\widehat B = {65^0}.\) Chọn khẳng định đúng.

  • A.
    \(AB < BC < AC.\)
  • B.
    \(BC > AC > AB.\)
  • C.
    \(BC < AC < AB.\)
  • D.
    \(AC < AB < BC.\)

Đáp án : B

Phương pháp giải :

Dựa vào mối quan hệ giữa góc và cạnh đối nhau trong một tam giác và định lí tổng ba góc của một tam giác bằng \({180^0}\).

Lời giải chi tiết :

Tam giác ABC vuông tại A có \(\widehat B = {65^0}\) nên

\(\widehat C = {180^0} - \widehat A - \widehat B = {180^0} - {90^0} - {65^0} = {25^0}\).

Vì \(\widehat A > \widehat B > \widehat C\left( {{{90}^0} > {{65}^0} > {{25}^0}} \right)\) nên \(BC > AC > AB\).

Đáp án B.

Câu 10 :

Cho tam giác \(ABC\) có AM là đường trung tuyến, trọng tâm \(G\). Khẳng định nào sau đây đúng?

  • A.
    \(AM = 3AG.\)
  • B.
    \(AG = 2GM.\)
  • C.
    \(3AM = 2AG.\)
  • D.
    \(AG = \frac{1}{2}GM.\)

Đáp án : B

Phương pháp giải :

Dựa vào kiến thức về trọng tâm của tam giác.

Lời giải chi tiết :

Vì G là trọng tâm của tam giác ABC nên \(AG = \frac{2}{3}AM\) suy ra \(GM = AM - AG = AM - \frac{2}{3}AM = \frac{1}{3}AM\).

Suy ra \(\frac{{GM}}{{AG}} = \frac{{\frac{1}{3}AM}}{{\frac{2}{3}AM}} = \frac{1}{2}\) hay \(AG = 2GM\).

Đáp án B.

Câu 11 :

Bộ ba số nào là độ dài ba cạnh của một tam giác?

  • A.
    \(4cm,\;5cm,\;10cm.\)
  • B.
    \(5cm,\;5cm,\;12cm.\)
  • C.
    \(11cm,\;11cm,\;20cm.\)
  • D.
    \(9cm,\;20cm,\;11cm.\)

Đáp án : C

Phương pháp giải :

Dựa vào quan hệ giữa các cạnh của một tam giác.

Lời giải chi tiết :

Ta có:

4 + 5 = 9 < 10, ba độ dài \(4cm,\;5cm,\;10cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.

5 + 5 = 10 < 12, ba độ dài \(5cm,\;5cm,\;12cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.

11 > 20 – 11 = 9, ba độ dài \(11cm,\;11cm,\;20cm\) thỏa mãn điều kiện của bất đẳng thức tam giác nên đây có thể là độ dài ba cạnh của một tam giác.

11 = 20 – 9, ba độ dài \(9cm,\;20cm,\;11cm\) không thỏa mãn một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác.

Đáp án C.

Câu 12 :

Cho \(\Delta ABC\) có \(\widehat A = {35^0};\widehat B = {45^0}\). Số đo góc C là:

  • A.
    \({70^0}\).
  • B.
    \({80^0}\).
  • C.
    \({90^0}\).
  • D.
    \({100^0}\).

Đáp án : D

Phương pháp giải :

Dựa vào định lí tổng ba góc của một tam giác bằng \({180^0}\).

Lời giải chi tiết :

Số đo góc C là:

\(\begin{array}{l}\widehat C = {180^0} - \widehat A - \widehat B\\ = {180^0} - {35^0} - {45^0}\\ = {100^0}\end{array}\)

Đáp án D.

II. Tự luận
Phương pháp giải :

a) Thay \(x = - 2,\;y = \frac{1}{3}\) vào A để tính giá trị biểu thức.

b) Sử dụng các phép tính với đa thức một biến để tìm giá trị của x.

Lời giải chi tiết :

a) Tại \(x = - 2,\;y = \frac{1}{3}\) ta có

\(\begin{array}{l}A = \left[ {2 \cdot ( - 2) + \frac{1}{3}} \right]\left[ {2 \cdot ( - 2) - \frac{1}{3}} \right]\\ = \left( { - 4 + \frac{1}{3}} \right)\left( { - 4 - \frac{1}{3}} \right)\\ = \frac{{ - 11}}{3}.\frac{{ - 13}}{3}\\ = \frac{{143}}{9}.\end{array}\)

b) \(x(3x - 2) - 3{x^2} = \frac{3}{4}\)

\(\begin{array}{l}3{x^2} - 2x - 3{x^2} = \frac{3}{4}\\ - 2x = \frac{3}{4}\\x = \frac{{ - 3}}{8}.\end{array}\)

Vậy \(x = \frac{{ - 3}}{8}\).

Phương pháp giải :

Gọi số tấm thiệp của ba lớp 7A, 7B, 7C lần lượt là \(x,y,z\left( {x,y,z \in {\mathbb{N}^ * }} \right)\)

Viết phương trình dựa vào đề bài.

Áp dụng tính chất dãy tỉ số bằng nhau để tìm x, y, z.

Lời giải chi tiết :

Gọi số tấm thiệp của ba lớp 7A, 7B, 7C lần lượt là \(x,y,z\left( {x,y,z \in {\mathbb{N}^ * }} \right)\)

Vì có 40 tấm thiệp nên x + y + z = 40

Vì số học sinh tỉ lệ với số thiệp cần làm nên ta có \(\frac{x}{{45}} = \frac{y}{{42}} = \frac{z}{{33}}\).

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{{45}} = \frac{y}{{42}} = \frac{z}{{33}} = \frac{{x + y + z}}{{45 + 42 + 33}} = \frac{{40}}{{120}} = \frac{1}{3}\)

Từ đó ta tính được \(\left( {x,y,z} \right) = \left( {15;14;11} \right)\).

Vậy số tấm thiệp của ba lớp 7A, 7B, 7C lần lượt là 15; 14; 11.

Phương pháp giải :

Thực hiện tính toán với đa thức một biến.

Lời giải chi tiết :

a) \(A\left( x \right) = 5{x^4} - 7{x^2} - 3x - 6{x^2} + 11x - 30\)

\(\begin{array}{l} = 5{x^4} + \left( { - 7{x^2} - 6{x^2}} \right) + \left( { - 3x + 11x} \right) - 30\\ = 5{x^4} - 13{x^2} + 8x - 30\end{array}\)

\(B\left( x \right) =  - 11{x^3} + 5x - 10 + 13{x^4} - 2 + 20{x^3} - 34x\)

\(\begin{array}{l} = 13{x^4} + \left( { - 11{x^3} + 20{x^3}} \right) + \left( {5x - 34x} \right) + \left( { - 10 - 2} \right)\\ = 13{x^4} + 9{x^3} - 29x - 12\end{array}\)

b) \(A\left( x \right) - B\left( x \right) = \left( {5{x^4} - 13{x^2} + 8x - 30} \right) - \left( {3{x^4} + 9{x^3} - 29x - 12} \right)\)

\(\begin{array}{l} = 5{x^4} - 13{x^2} + 8x - 30 - 3{x^4} - 9{x^3} + 29x + 12\\ = \left( {5{x^4} - 3{x^4}} \right) - 9{x^3} - 13{x^2} + \left( {8x + 29x} \right) + \left( { - 30 + 12} \right)\\ = 2{x^4} - 9{x^3} - 13{x^2} + 37x - 18\end{array}\)

Phương pháp giải :

a) Chứng minh \(\Delta ABH = \Delta ACK\) theo trường hợp cạnh huyền – góc nhọn. suy ra AH = AK nên tam giác AKH là tam giác cân.

b) Chứng minh \(\widehat {{P_1}} = \widehat {{N_1}}\) nên \(\Delta AKI = \Delta AHI\) theo trường hợp cạnh huyền – cạnh góc vuông suy ra \(\widehat {AIK} = \widehat {AIH}\)

Từ đó ta có \(\widehat {CIM} = \widehat {BIM}\) nên IM là phân giác của góc BIC

c) Từ tam giác cân ABC và AHK ta có \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\), \(\widehat {AKH} = \frac{{180^\circ - \widehat A}}{2}\) nên \(\widehat {ABC} = \widehat {AKH}\).

Mà hai góc này ở vị trí đồng vị nên HK // BC.

Lời giải chi tiết :

a) Xét \(\Delta ABH\) và \(\Delta ACK\) có:

\(\widehat {AHB} = \widehat {AKC} = 90^\circ \) (vì \(BH \bot AC;CK \bot AB\))

AB = AC (\(\Delta ABC\) cân);

góc A chung;

Do đó: \(\Delta ABH = \Delta ACK\) (cạnh huyền – góc nhọn).

\( \Rightarrow AH = AK \Rightarrow \Delta AHK\) cân tại A (đpcm).

b) Xét \(\Delta AKI\) và \(\Delta AHI\) có: \(\widehat {AKI} = \widehat {AHI} = 90^\circ \) (vì \(BH \bot AC;CK \bot AB\))

AK = AH (\(\Delta AHK\) cân tại A );

cạnh AI chung;

Do đó: \(\Delta AKI = \Delta AHI\) (cạnh huyền – cạnh góc vuông).

\( \Rightarrow \widehat {AIK} = \widehat {AIH}\).

Mà: \(\widehat {AIK} = \widehat {CIM};\widehat {AIH} = \widehat {BIM}\) (2 góc đối đỉnh).

Do đó: \(\widehat {CIM} = \widehat {BIM}\)\( \Rightarrow IM\)là phân giác của góc BIC (đpcm).

c) \(\Delta ABC\) cân tại A nên: \(\widehat {ABC} = \frac{{180^\circ - \widehat A}}{2}\) .

\(\Delta AHK\) cân tại A nên: \(\widehat {AKH} = \frac{{180^\circ  - \widehat A}}{2}\) .

Suy ra \(\widehat {ABC} = \widehat {AKH}\).

Mà 2 góc này ở vị trí đồng vị.

Do đó: KH // BC (đpcm).

Phương pháp giải :

Biến đổi \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\) thành \(\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4}\).

Áp dụng tính chất dãy tỉ số bằng nhau để suy ra \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2} = 0\)

Từ đó ta có \(6z = 12x = 8y\).

Đặt \(6z = 12x = 8y = 24k\left( {k > 0} \right) \Rightarrow \left( {x;y;z} \right) = \left( {2k;3k;4k} \right)\)

Tìm k dựa vào \(200 < {y^2} + {z^2} < 450\)

Từ đó tính được x, y, z.

Lời giải chi tiết :

Ta có \(\frac{{2z - 4x}}{3} = \frac{{3x - 2y}}{4} = \frac{{4y - 3z}}{2}\) nên

\(\begin{array}{l}\frac{{3\left( {z - 4x} \right)}}{{3.3}} = \frac{{4\left( {3x - 2y} \right)}}{{4.4}} = \frac{{2\left( {4y - 3z} \right)}}{{2.2}}\\\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4}\end{array}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{{6z - 12x}}{9} = \frac{{12x - 8y}}{{16}} = \frac{{8y - 6z}}{4} = \frac{{6z - 12x + 12x - 8y + 8y - 6z}}{{9 + 16 + 4}} = \frac{0}{{29}} = 0\)

Do đó \(\left\{ \begin{array}{l}6z - 12x = 0\\12x - 8y = 0\\8y - 6z = 0\end{array} \right.\) hay \(6z = 12x = 8y\).

Đặt \(6z = 12x = 8y = 24k\left( {k > 0} \right)\) ta được \(\left( {x;y;z} \right) = \left( {2k;3k;4k} \right)\)

Theo giả thiết \(200 < {y^2} + {z^2} < 450\) hay \(200 < 9{k^2} + 16{k^2} < 450\)

suy ra \(200 < 25{k^2} < 450 \Rightarrow k \in \left\{ {3;4} \right\}\)

Từ đó tìm được \(\left( {x;y;z} \right) \in \left\{ {\left( {6;9;12} \right);\left( {8;12;16} \right)} \right\}\)


Cùng chủ đề:

Đề thi học kì 2 Toán 7 - Đề số 2 - Chân trời sáng tạo
Đề thi học kì 2 Toán 7 - Đề số 3 - Chân trời sáng tạo
Đề thi học kì 2 Toán 7 - Đề số 4 - Chân trời sáng tạo
Đề thi học kì 2 Toán 7 - Đề số 5 - Chân trời sáng tạo
Đề thi học kì 2 Toán 7 - Đề số 11 - Chân trời sáng tạo
Đề thi học kì 2 Toán 7 - Đề số 12 - Chân trời sáng tạo
Đề thi học kì 2 Toán 7 - Đề số 13 - Chân trời sáng tạo
Đề thi học kì 2 môn Toán 7 CTST có đáp án và lời giải chi tiết
Đề thi học kì 2 môn Toán 7 CTST có đáp án và lời giải chi tiết
Đề thi toán 7, đề kiểm tra toán 7 chân trời sáng tạo có đáp án và lời giải chi tiết