Giải bài 1. 50 trang 33 sách bài tập toán 12 - Kết nối tri thức — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Kết nối tri thức Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liê


Giải bài 1.50 trang 33 sách bài tập toán 12 - Kết nối tri thức

a) Chứng tỏ rằng nếu lợi nhuận (Pleft( x right)) là cực đại thì doanh thu biên bằng chi phí biên. b) Cho (Cleft( x right) = 16000 + 500x - 1,6{x^2} + 0,004{x^3}) là hàm chi phí và (pleft( x right) = 1700 - 7x) là hàm cầu. Hãy tìm mức sản xuất sẽ tối đa lợi nhuận.

Đề bài

a) Chứng tỏ rằng nếu lợi nhuận \(P\left( x \right)\) là cực đại thì doanh thu biên bằng chi phí biên.

b) Cho \(C\left( x \right) = 16000 + 500x - 1,6{x^2} + 0,004{x^3}\) là hàm chi phí và \(p\left( x \right) = 1700 - 7x\) là hàm cầu. Hãy tìm mức sản xuất sẽ tối đa lợi nhuận.

Phương pháp giải - Xem chi tiết

Ý a: Tính hàm lợi nhuận \(P\left( x \right) = R\left( x \right) - C\left( x \right)\), tính đạo hàm và sử dụng ý nghĩa của cực đại.

Ý b: Xác định công thức hàm lợi nhuận \(P\left( x \right) = x \cdot p\left( x \right) - C\left( x \right)\) và tìm giá trị lớn nhất.

Lời giải chi tiết

a) Ta có hàm lợi nhuận \(P\left( x \right) = R\left( x \right) - C\left( x \right)\) trong đó \(R\left( x \right)\) là doanh thu và \(C\left( x \right)\) là chi phí.

Khi lợi nhuận đạt cực đại tại \({x_0}\) thì \(P'\left( {{x_0}} \right) = R'\left( {{x_0}} \right) - C'\left( {{x_0}} \right) = 0\) hay \(R'\left( {{x_0}} \right) = C'\left( {{x_0}} \right)\). Nói cách khác doanh thu biên bằng chi phí biên.

b) Ta có hàm lợi nhuận

\(\begin{array}{l}P\left( x \right) = x \cdot p\left( x \right) - C\left( x \right) = x\left( {1700 - 7x)} \right) - \left( {16000 + 500x - 1,6{x^2} + 0,004{x^3}} \right)\ =  - 16000 + 1200x - 5,4{x^2} - 0,004{x^3}\end{array}\)

Suy ra \(P'\left( x \right) = 1200 - 10,8x - 0,012{x^2}\) khi đó \(P'\left( x \right) = 0 \Leftrightarrow 1200 - 10,8x - 0,012{x^2} = 0 \Leftrightarrow x = 100\) do \(x > 0\).

Lập bảng biến thiên

Vậy mức sản xuất tối đa là 100 đơn vị hàng hóa.


Cùng chủ đề:

Giải bài 1. 45 trang 32 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 46 trang 32 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 47 trang 32 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 48 trang 32 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 49 trang 32 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 50 trang 33 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 51 trang 33 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 52 trang 33 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 53 trang 33 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 54 trang 34 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 55 trang 34 sách bài tập toán 12 - Kết nối tri thức