Trong mặt phẳng tọa độ \(Oxy\), ta xét Elip \(\left( E \right)\) có phương trình chính tắc là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), trong đó \(a > b > 0\) (Hình 2)
a) Nêu nhận xét về vị trí bốn đỉnh của elip \(\left( E \right)\) với bốn cạnh của hình chữ nhật cơ sở.
Giả sử đường elip (E) là tập hợp các điểm M trong mặt phẳng sao cho \(M{F_1} + M{F_2} = 2a\), ở đó \({F_1}{F_2} = 2c\) với \(0 < c < a\).
Cho elip (E) \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)
Cho elip (E) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)
Vẽ elip (E): \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\)
Viết phương trình chính tắc của elip (E) trong mỗi trường hợp sau:
Tìm tâm sai của elip (E) trong mỗi trường hợp sau:
Trái Đất chuyển động quanh Mặt Trời theo một quỹ đạo là đường elip mà Mặt Trời là một tiêu điểm. Biết elip này có bán trục lớn \(a \approx 149.598.261\) km và tâm sai \(e \approx 0,017\). Tìm khoảng cách nhỏ nhất và lớn nhất giữa Trái Đất và Mặt Trời (kết quả được làm tròn đến hàng đơn vị)
Cho elip (E): \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Tìm tọa độ điểm \(M \in \left( E \right)\) sao cho độ dài \({F_2}M\) lớn nhất, biết \({F_2}\) là một tiêu điểm có hoành độ dương của (E)
Hình 11 minh họa mặt cắt đứng của một căn phòng trong bảo tàng với mái vòm trần nhà của căn phòng đó có dạng một nửa đường elip. Chiều rộng của văn phòng là 16 m, chiều cao của tường là 4 m, chiều cao của mái vòm là 3 m.