Giải bài 33 trang 53 sách bài tập toán 12 - Kết nối tri thức — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Kết nối tri thức Bài tập ôn tập cuối năm - SBT Toán 12 Kết nối tri thức


Giải bài 33 trang 53 sách bài tập toán 12 - Kết nối tri thức

Tính thể tích khối tròn xoay tạo thành khi quay quanh Ox hình phẳng giới hạn bởi đường parabol (y = {x^2} - 3x + 2), trục hoành và các đường thẳng (x = 1;x = 2).

Đề bài

Tính thể tích khối tròn xoay tạo thành khi quay quanh Ox hình phẳng giới hạn bởi đường parabol \(y = {x^2} - 3x + 2\), trục hoành và các đường thẳng \(x = 1;x = 2\).

Phương pháp giải - Xem chi tiết

Ứng dụng tích phân để tính.

Lời giải chi tiết

Tính thể tích khối tròn xoay tạo thành khi quay quanh Ox hình phẳng giới hạn bởi đường parabol \(y = {x^2} - 3x + 2\), trục hoành và các đường thẳng \(x = 1;x = 2\) là

\(V = \pi \int\limits_1^2 {{{\left( {{x^2} - 3x + 2} \right)}^2}dx}  = \pi \int\limits_1^2 {\left( {{x^4} + 9{x^2} + 4 - 6{x^3} - 12x + 4{x^2}} \right)dx} \)

\( = \pi \int\limits_1^2 {\left( {{x^4} - 6{x^3} + 13{x^2} - 12x + 4} \right)dx = } \pi \left. {\left( {\frac{{{x^5}}}{5} - \frac{{3{x^4}}}{2} + \frac{{13{x^3}}}{3} - 6{x^2} + 4x} \right)} \right|_1^2 = \left( {\frac{{16}}{{15}} - \frac{{31}}{{30}}} \right)\pi  = \frac{\pi }{{30}}\).


Cùng chủ đề:

Giải bài 28 trang 52 sách bài tập toán 12 - Kết nối tri thức
Giải bài 29 trang 53 sách bài tập toán 12 - Kết nối tri thức
Giải bài 30 trang 53 sách bài tập toán 12 - Kết nối tri thức
Giải bài 31 trang 53 sách bài tập toán 12 - Kết nối tri thức
Giải bài 32 trang 53 sách bài tập toán 12 - Kết nối tri thức
Giải bài 33 trang 53 sách bài tập toán 12 - Kết nối tri thức
Giải bài 34 trang 53 sách bài tập toán 12 - Kết nối tri thức
Giải bài 35 trang 53 sách bài tập toán 12 - Kết nối tri thức
Giải bài 36 trang 54 sách bài tập toán 12 - Kết nối tri thức
Giải bài 37 trang 54 sách bài tập toán 12 - Kết nối tri thức
Giải bài 38 trang 54 sách bài tập toán 12 - Kết nối tri thức