Giải bài 35 trang 53 sách bài tập toán 12 - Kết nối tri thức — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Kết nối tri thức Bài tập ôn tập cuối năm - SBT Toán 12 Kết nối tri thức


Giải bài 35 trang 53 sách bài tập toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho đường thẳng (Delta :frac{{x - 2}}{1} = frac{{y + 2}}{2} = frac{{z - 3}}{2}) và mặt phẳng (left( P right):2x + y - z - 3 = 0). a) Tính góc giữa đường thẳng (Delta ) và mặt phẳng (left( P right)). b) Viết phương trình mặt phẳng (left( Q right)) chứa (Delta ) và mặt phẳng (left( Q right)) vuông góc với mặt phẳng (left( P right)).

Đề bài

Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{{x - 2}}{1} = \frac{{y + 2}}{2} = \frac{{z - 3}}{2}\) và mặt phẳng \(\left( P \right):2x + y - z - 3 = 0\).

a) Tính góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\).

b) Viết phương trình mặt phẳng \(\left( Q \right)\) chứa \(\Delta \) và mặt phẳng \(\left( Q \right)\) vuông góc với mặt phẳng \(\left( P \right)\).

Phương pháp giải - Xem chi tiết

Ý a: Áp dụng công thức liên hệ giữa cosin và tích vô hướng của hai vectơ.

Ý b: Một vectơ pháp tuyến của \(\left( Q \right)\) là tích có hướng của vectơ chỉ phương của \(\Delta \) và vectơ pháp tuyến của \(\left( P \right)\).

Lời giải chi tiết

a) Ta có vectơ chỉ phương của \(\Delta \) là \(\overrightarrow u  = \left( {1;2;2} \right)\), vectơ pháp tuyến của \(\left( P \right)\) là \(\overrightarrow n  = \left( {2;1; - 1} \right)\).

\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u  \cdot \overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|\left| {\overrightarrow n } \right|}} = \frac{{\sqrt 6 }}{9} \Leftrightarrow \left( {\Delta ,\left( P \right)} \right) \approx {15,8^ \circ }\).

b) Một vectơ pháp tuyến của \(\left( Q \right)\) là \(\overrightarrow {{n_Q}}  = \left[ {\overrightarrow u ,\overrightarrow n } \right] = \left( { - 4;5; - 3} \right)\).

\(\left( Q \right)\) chứa \(\Delta \) nên nó đi qua \(A\left( {2; - 2;3} \right)\).

Phương trình mặt phẳng \(\left( Q \right)\) là \( - 4\left( {x - 2} \right) + 5\left( {y + 2} \right) - 3\left( {z - 3} \right) = 0 \Leftrightarrow 4x - 5y + 3z - 27 = 0\).


Cùng chủ đề:

Giải bài 30 trang 53 sách bài tập toán 12 - Kết nối tri thức
Giải bài 31 trang 53 sách bài tập toán 12 - Kết nối tri thức
Giải bài 32 trang 53 sách bài tập toán 12 - Kết nối tri thức
Giải bài 33 trang 53 sách bài tập toán 12 - Kết nối tri thức
Giải bài 34 trang 53 sách bài tập toán 12 - Kết nối tri thức
Giải bài 35 trang 53 sách bài tập toán 12 - Kết nối tri thức
Giải bài 36 trang 54 sách bài tập toán 12 - Kết nối tri thức
Giải bài 37 trang 54 sách bài tập toán 12 - Kết nối tri thức
Giải bài 38 trang 54 sách bài tập toán 12 - Kết nối tri thức
Giải bài 39 trang 54 sách bài tập toán 12 - Kết nối tri thức
Giải bài 40 trang 54 sách bài tập toán 12 - Kết nối tri thức