Giải bài 5.33 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Biết hàm số f(x)={x2+akhix≤12x+bkhix<1
Đề bài
Biết hàm số f(x)={x2+akhix≤12x+bkhix<1 có giới hạn khi x→1. Giá trị của a−b bằng
A . −1
B . 0
C . 1
D . 3.
Phương pháp giải - Xem chi tiết
Dựa vào lý thuyết lim khi và chỉ khi \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L để tính giá trị a - b.
Lời giải chi tiết
Đáp án C.
Giới hạn của f(x) khi x \to 1 tồn tại khi và chỉ khi \mathop {\lim }\limits_{x \to 1_{}^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right).
Nên \mathop {\lim }\limits_{x \to 1_{}^ + } \left( {{x^2} + a} \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {2x + b} \right) \Rightarrow 1 + a = 2.1 + b \Rightarrow a - b = 1.