Giải bài 5 trang 63 sách bài tập toán 12 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo Bài 1. Vecto và các phép toán trong không gian - SBT To


Giải bài 5 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \(O,O'\)lần lượt là tâm của các hình vuông \(ABCD\) và \(A'B'C'D'\); \(I\) là giao điểm của \(AC'\) và \(A'C\). Chứng minh rằng: a) \(\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} = 4\overrightarrow {OO'} \); b) \(\overrightarrow {DB} + \overrightarrow {DD'} = 2\overrightarrow {DI} \).

Đề bài

Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \(O,O'\)lần lượt là tâm của các hình vuông \(ABCD\) và \(A'B'C'D'\); \(I\) là giao điểm của \(AC'\) và \(A'C\). Chứng minh rằng:

a) \(\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'}  = 4\overrightarrow {OO'} \);

b) \(\overrightarrow {DB}  + \overrightarrow {DD'}  = 2\overrightarrow {DI} \).

Phương pháp giải - Xem chi tiết

Sử dụng quy tắc hình bình hành.

Lời giải chi tiết

a) \(\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'}  = \left( {\overrightarrow {OA'}  + \overrightarrow {OC'} } \right) + \left( {\overrightarrow {OB'}  + \overrightarrow {OD'} } \right) = 2\overrightarrow {OO'}  + 2\overrightarrow {OO'}  = 4\overrightarrow {OO'} \)

b) Ta có: \(A'B'\parallel C{\rm{D}},A'B' = C{\rm{D}}\)

Suy ra \(A'B'C{\rm{D}}\) là hình bình hành.

Do đó \(A'C\) và \(B'D\) cắt nhau tại trung điểm mỗi đường.

Vì \(I\) là trung điểm của \(A'C\) nên \(I\) là trung điểm của \(B'D\).

Suy ra \(\overrightarrow {DB}  + \overrightarrow {DD'}  = \overrightarrow {DB'}  = 2\overrightarrow {DI} \).


Cùng chủ đề:

Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 46 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 55 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 60 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 61 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 63 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 65 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 71 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 76 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 77 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 5 trang 80 sách bài tập toán 12 - Chân trời sáng tạo