Giải bài 6.16 trang 9 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
Tính các hiệu sau: a) \(\frac{{2{x^2} - 1}}{{{x^2} - 3x}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2} - 3x}}\)
Đề bài
Tính các hiệu sau:
a) \(\frac{{2{x^2} - 1}}{{{x^2} - 3x}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2} - 3x}}\)
b) \(\frac{1}{{2x - 3}} - \frac{{13}}{{\left( {2x - 3} \right)\left( {4x + 7} \right)}}\)
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức trừ hai phân thức cùng mẫu để tính hiệu: Trừ các tử thức với nhau và giữ nguyên mẫu thức:
\(\frac{A}{M} - \frac{B}{M} = \frac{{A - B}}{M}\)
b) Sử dụng kiến thức trừ hai phân thức khác mẫu để tính hiệu: Quy đồng mẫu thức rồi trừ các phân thức cùng mẫu nhận được:
\(\frac{A}{M} - \frac{B}{N} = \frac{{AN - BM}}{{MN}}\)
Lời giải chi tiết
a)
\(\frac{{2{x^2} - 1}}{{{x^2} - 3x}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2} - 3x}} \\= \frac{{2{x^2} - 1 - {x^2} + 1}}{{{x^2} - 3x}} \\= \frac{{{x^2}}}{{x\left( {x - 3} \right)}} = \frac{x}{{x - 3}}\)
b)
\(\frac{1}{{2x - 3}} - \frac{{13}}{{\left( {2x - 3} \right)\left( {4x + 7} \right)}} \\= \frac{{4x + 7}}{{\left( {2x - 3} \right)\left( {4x + 7} \right)}} - \frac{{13}}{{\left( {2x - 3} \right)\left( {4x + 7} \right)}} \\= \frac{{4x + 7 - 13}}{{\left( {2x - 3} \right)\left( {4x + 7} \right)}}\)
\( = \frac{{4x - 6}}{{\left( {2x - 3} \right)\left( {4x + 7} \right)}} = \frac{{2\left( {2x - 3} \right)}}{{\left( {2x - 3} \right)\left( {4x + 7} \right)}} = \frac{2}{{4x + 7}}\)