Giải bài 6 trang 55 sách bài tập toán 12 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo Bài 2. Phương trình đường thẳng trong không gian - SBT


Giải bài 6 trang 55 sách bài tập toán 12 - Chân trời sáng tạo

Cho hình chóp (S.ABCD) có đáy (ABCD) là hình vuông cạnh bằng 4. Mặt bên (SAB) là tam giác cân tại (S) có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy. a) Tính góc (alpha ) giữa hai đường thẳng (SD) và (BC); b) Tính góc (beta ) giữa hai mặt phẳng (left( {SAD} right)) và (left( {SCD} right)).

Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng 4. Mặt bên \(SAB\) là tam giác cân tại \(S\) có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy.

a) Tính góc \(\alpha \) giữa hai đường thẳng \(SD\) và \(BC\);

b) Tính góc \(\beta \) giữa hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SCD} \right)\).

Phương pháp giải - Xem chi tiết

Gắn vào hệ trục toạ độ và sử dụng công thức góc giữa hai đường thẳng và góc giữa hai mặt phẳng.

Lời giải chi tiết

Gọi \(O\) là trung điểm của \(AB\), \(I\) là trung điểm của \(C{\rm{D}}\).

\(SAB\) là tam giác cân tại \(S\) nên \(SO \bot AB\), suy ra \(SO \bot \left( {ABCD} \right)\).

Chọn hệ trục \(Oxyz\) như hình vẽ. Ta có:

\(S\left( {0;0;6} \right),A\left( {2;0;0} \right),B\left( { - 2;0;0} \right),C\left( { - 2;4;0} \right),D\left( {2;4;0} \right)\).

a) Ta có \(\overrightarrow {SD}  = \left( {2;4; - 6} \right),\overrightarrow {BC}  = \left( {0;4;0} \right)\), suy ra

\(\cos \left( {S{\rm{D}},BC} \right) = \left| {\cos \left( {\overrightarrow {S{\rm{D}}} ,\overrightarrow {BC} } \right)} \right| = \frac{{\left| {2.0 + 4.4 + \left( { - 6} \right).0} \right|}}{{\sqrt {{2^2} + {4^2} + {{\left( { - 6} \right)}^2}} .\sqrt {{0^2} + {4^2} + {0^2}} }} = \frac{{\sqrt {14} }}{7}\)

Vậy \(\left( {S{\rm{D}},BC} \right) \approx {57,7^ \circ }\).

b) Ta có: \(\overrightarrow {SD}  = \left( {2;4; - 6} \right),\overrightarrow {SA}  = \left( {2;0; - 6} \right) \Rightarrow \left[ {\overrightarrow {SD} ,\overrightarrow {SA} } \right] = \left( { - 24;0; - 8} \right) =  - 8\left( {3;0;1} \right)\).

Do đó \(\left( {SAD} \right)\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;0;1} \right)\).

\(\overrightarrow {SD}  = \left( {2;4; - 6} \right),\overrightarrow {CD}  = \left( {4;0;0} \right) \Rightarrow \left[ {\overrightarrow {SD} ,\overrightarrow {CD} } \right] = \left( {0; - 24; - 16} \right) =  - 8\left( {0;3;2} \right)\).

Do đó \(\left( {SCD} \right)\) có vectơ pháp tuyến \(\overrightarrow {n'}  = \left( {0;3;2} \right)\).

\(\cos \left( {\left( {SAD} \right),\left( {SCD} \right)} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right| = \frac{{\left| {3.0 + 0.3 + 1.2} \right|}}{{\sqrt {{3^2} + {0^2} + {1^2}} .\sqrt {{0^2} + {3^2} + {2^2}} }} = \frac{{2\sqrt {130} }}{{130}}\)

Vậy \(\left( {\left( {SAD} \right),\left( {SCD} \right)} \right) \approx {79,9^ \circ }\).


Cùng chủ đề:

Giải bài 6 trang 25 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 6 trang 32 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 6 trang 34 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 6 trang 46 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 6 trang 55 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 6 trang 60 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 6 trang 62 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 6 trang 63 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 6 trang 65 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 6 trang 71 sách bài tập toán 12 - Chân trời sáng tạo