Giải bài 6 trang 34 sách bài tập toán 12 - Chân trời sáng tạo
Đồ thị đạo hàm \(f'\left( x \right)\) của hàm số \(y = f\left( x \right)\) được cho trong Hình 2. Điểm cực tiểu của hàm số \(y = f\left( x \right)\) là A. \(x = - 3\). B. \(x = - 1\). C. \(x = 0\). D. \(x = 1\).
Đề bài
Đồ thị đạo hàm \(f'\left( x \right)\) của hàm số \(y = f\left( x \right)\) được cho trong Hình 2.
Điểm cực tiểu của hàm số \(y = f\left( x \right)\) là
A. \(x = - 3\).
B. \(x = - 1\).
C. \(x = 0\).
D. \(x = 1\).
Phương pháp giải - Xem chi tiết
Từ đồ thị hàm số \(y = f'\left( x \right)\), lập bảng biến thiên của hàm số \(y = f\left( x \right)\) rồi xác định cực trị của hàm số.
Lời giải chi tiết
Ta có: \(y' = 0\) khi \(x = - 1;x = 1\) hoặc \(x = - 2\).
Bảng xét dấu đạo hàm của hàm số:
Dựa vào bảng xét dấu đạo hàm ta có: Hàm số đạt cực tiểu tại \(x = - 1\).
Chọn B.
Cùng chủ đề:
Giải bài 6 trang 34 sách bài tập toán 12 - Chân trời sáng tạo