Giải bài 62 trang 26 sách bài tập toán 12 - Cánh diều — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Cánh diều Bài 3. Đường tiệm cận của đồ thị hàm số - SBT Toán 12 C


Giải bài 62 trang 26 sách bài tập toán 12 - Cánh diều

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = frac{{{x^2} - 3}}{{ - x - 1}}). a) Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 1). b) Đồ thị hàm số có tiệm cận ngang là đường thẳng (y = - 1). c) Đồ thị hàm số có tiệm cận xiên là đường thẳng (y = - x). d) Giao điểm (I) của hai đường tiệm cận của đồ thị hàm số là (Ileft( { - 1;1} right)).

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Cho hàm số \(y = \frac{{{x^2} - 3}}{{ - x - 1}}\).

a) Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x =  - 1\).

b) Đồ thị hàm số có tiệm cận ngang là đường thẳng \(y =  - 1\).

c) Đồ thị hàm số có tiệm cận xiên là đường thẳng \(y =  - x\).

d) Giao điểm \(I\) của hai đường tiệm cận của đồ thị hàm số là \(I\left( { - 1;1} \right)\).

Phương pháp giải - Xem chi tiết

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:

\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.

‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\):

\(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - ax} \right]\) hoặc

\(a = \mathop {\lim }\limits_{x \to  - \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right) - ax} \right]\)

Lời giải chi tiết

Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{{x^2} - 3}}{{ - x - 1}} =  - \infty ;\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{{x^2} - 3}}{{ - x - 1}} =  + \infty \)

Vậy \(x =  - 1\) là tiệm cận đứng của đồ thị hàm số đã cho. Vậy a) đúng.

• \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} - 3}}{{ - x - 1}} =  - \infty ;\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{{x^2} - 3}}{{ - x - 1}} =  + \infty \)

Vậy hàm số không có tiệm cận ngang. Vậy b) sai.

• \(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} - 3}}{{x\left( { - x - 1} \right)}} =  - 1\) và

\(b = \mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) + x} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left[ {\frac{{{x^2} - 3}}{{ - x - 1}} + x} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - x - 3}}{{ - x - 1}} = 1\)

Vậy đường thẳng \(y =  - x + 1\) là tiệm cận xiên của đồ thị hàm số đã cho. Vậy c) sai.

Do đó, giao điểm của hai đường tiệm cận là \(I\left( { - 1;2} \right)\). Vậy d) sai.

a) Đ.

b) S.

c) S.

d) S.


Cùng chủ đề:

Giải bài 60 trang 25 sách bài tập toán 12 - Cánh diều
Giải bài 60 trang 68 sách bài tập toán 12 - Cánh diều
Giải bài 61 trang 26 sách bài tập toán 12 - Cánh diều
Giải bài 61 trang 29 sách bài tập toán 12 - Cánh diều
Giải bài 61 trang 68 sách bài tập toán 12 - Cánh diều
Giải bài 62 trang 26 sách bài tập toán 12 - Cánh diều
Giải bài 62 trang 30 sách bài tập toán 12 - Cánh diều
Giải bài 62 trang 68 sách bài tập toán 12 - Cánh diều
Giải bài 63 trang 26 sách bài tập toán 12 - Cánh diều
Giải bài 63 trang 30 sách bài tập toán 12 - Cánh diều
Giải bài 63 trang 68 sách bài tập toán 12 - Cánh diều