Giải bài 64 trang 30 sách bài tập toán 12 - Cánh diều — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Cánh diều Bài tập cuối chương 4 - SBT Toán 12 Cánh diều


Giải bài 64 trang 30 sách bài tập toán 12 - Cánh diều

Tính: a) (intlimits_0^{frac{pi }{2}} {sin xdx} ); b) (intlimits_0^{frac{pi }{4}} {cos xdx} ); c) (intlimits_{frac{pi }{4}}^{frac{pi }{2}} {frac{1}{{{{sin }^2}x}}dx} ); d) (intlimits_0^{frac{pi }{4}} {frac{1}{{{{cos }^2}x}}dx} ); e) (intlimits_0^{frac{pi }{2}} {left( {sin x - 2} right)dx} ); g) (intlimits_0^{frac{pi }{4}} {left( {3cos x + 2} right)dx} ).

Đề bài

Tính:

a) \(\int\limits_0^{\frac{\pi }{2}} {\sin xdx} \);

b) \(\int\limits_0^{\frac{\pi }{4}} {\cos xdx} \);

c) \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{1}{{{{\sin }^2}x}}dx} \);

d) \(\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx} \);

e) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\sin x - 2} \right)dx} \);

g) \(\int\limits_0^{\frac{\pi }{4}} {\left( {3\cos x + 2} \right)dx} \).

Phương pháp giải - Xem chi tiết

Sử dụng các công thức:

• \(\int {\sin xdx}  =  - \cos x + C\).

• \(\int {\cos xdx}  = \sin x + C\).

• \(\int {\frac{1}{{{{\cos }^2}x}}dx}  = \tan x + C\).

• \(\int {\frac{1}{{{{\sin }^2}x}}dx}  =  - \cot x + C\).

Lời giải chi tiết

a) \(\int\limits_0^{\frac{\pi }{2}} {\sin xdx}  = \left. { - \cos x} \right|_0^{\frac{\pi }{2}} =  - \cos \frac{\pi }{2} + \cos 0 = 1\).

b) \(\int\limits_0^{\frac{\pi }{4}} {\cos xdx}  = \left. {\sin x} \right|_0^{\frac{\pi }{4}} = \sin \frac{\pi }{4} - \sin 0 = \frac{{\sqrt 2 }}{2}\).

c) \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{1}{{{{\sin }^2}x}}dx}  = \left. { - \cot x} \right|_{\frac{\pi }{4}}^{\frac{\pi }{2}} =  - \cot \frac{\pi }{2} + \cot \frac{\pi }{4} = 1\).

d) \(\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx}  = \left. {\tan x} \right|_0^{\frac{\pi }{4}} = \tan \frac{\pi }{4} - \tan 0 = 1\).

e) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\sin x - 2} \right)dx}  = \left. {\left( { - \cos x - 2{\rm{x}}} \right)} \right|_0^{\frac{\pi }{2}} = \left( { - \cos \frac{\pi }{2} - 2.\frac{\pi }{2}} \right) - \left( { - \cos 0 - 2.0} \right) = 1 - \pi \).

g) \(\int\limits_0^{\frac{\pi }{4}} {\left( {3\cos x + 2} \right)dx}  = \left. {\left( {3\sin x + 2{\rm{x}}} \right)} \right|_0^{\frac{\pi }{4}} = \left( {3\sin \frac{\pi }{4} + 2.\frac{\pi }{4}} \right) - \left( {3\sin 0 + 2.0} \right) = \frac{{3\sqrt 2 }}{2} + \frac{\pi }{2}\).


Cùng chủ đề:

Giải bài 62 trang 68 sách bài tập toán 12 - Cánh diều
Giải bài 63 trang 26 sách bài tập toán 12 - Cánh diều
Giải bài 63 trang 30 sách bài tập toán 12 - Cánh diều
Giải bài 63 trang 68 sách bài tập toán 12 - Cánh diều
Giải bài 64 trang 26 sách bài tập toán 12 - Cánh diều
Giải bài 64 trang 30 sách bài tập toán 12 - Cánh diều
Giải bài 64 trang 69 sách bài tập toán 12 - Cánh diều
Giải bài 65 trang 26 sách bài tập toán 12 - Cánh diều
Giải bài 65 trang 30 sách bài tập toán 12 - Cánh diều
Giải bài 65 trang 69 sách bài tập toán 12 - Cánh diều
Giải bài 66 trang 26 sách bài tập toán 12 - Cánh diều