Giải bài 65 trang 26 sách bài tập toán 12 - Cánh diều
Tìm tiệm cận đứng, tiệm cận ngang, tiệm cận xiên (nếu có) của đồ thị mỗi hàm số sau: a) (y = frac{{3{rm{x}} + 5}}{{{x^2} - 4}}); b) (y = frac{{ - {x^2} - 1}}{{4{{rm{x}}^2} + 9}}); c) (y = frac{{3{x^2} + x}}{{1 - x}}).
Đề bài
Tìm tiệm cận đứng, tiệm cận ngang, tiệm cận xiên (nếu có) của đồ thị mỗi hàm số sau:
a) y=3x+5x2−4;
b) y=−x2−14x2+9;
c) y=3x2+x1−x.
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính lim hoặc \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right), nếu một trong các giới hạn sau thoả mãn:
\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty
thì đường thẳng x = {x_0} là đường tiệm cận đứng.
‒ Tìm tiệm cận ngang: Nếu \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0} hoặc \mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0} thì đường thẳng y = {y_0} là đường tiệm cận ngang.
‒ Tìm tiệm cận xiên y = ax + b\left( {a \ne 0} \right):
a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} và b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right] hoặc
a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x} và b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]
Lời giải chi tiết
a) Hàm số có tập xác định là \mathbb{R}\backslash \left\{ { - 2;2} \right\}.
Ta có:
• \mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = - \infty ;\mathop {\lim }\limits_{x \to - {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = + \infty
\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = - \infty ;\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = + \infty
Vậy x = - 2 và {\rm{x}} = 2 là các tiệm cận đứng của đồ thị hàm số đã cho.
• \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = 0;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = 0
Vậy y = 0 là tiệm cận ngang của đồ thị hàm số đã cho.
b) Hàm số có tập xác định là \mathbb{R}. Vậy hàm số không có tiệm cận đứng.
• \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - {x^2} - 1}}{{4{{\rm{x}}^2} + 9}} = - \frac{1}{4};\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - {x^2} - 1}}{{4{{\rm{x}}^2} + 9}} = - \frac{1}{4}
Vậy y = - \frac{1}{4} là tiệm cận ngang của đồ thị hàm số đã cho.
c) Hàm số có tập xác định là \mathbb{R}\backslash \left\{ 1 \right\}.
Ta có:
• \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{3{x^2} + x}}{{1 - x}} = + \infty ;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{3{x^2} + x}}{{1 - x}} = - \infty
Vậy {\rm{x}} = 1 là tiệm cận đứng của đồ thị hàm số đã cho.
• \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{x^2} + x}}{{1 - x}} = - \infty ;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3{x^2} + x}}{{1 - x}} = + \infty
Vậy hàm số không có tiệm cận ngang.
• a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{x^2} + x}}{{x\left( {1 - x} \right)}} = - 3 và
b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 3x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{3{x^2} + x}}{{1 - x}} + 3x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{4{\rm{x}}}}{{1 - x}} = - 4
Vậy đường thẳng y = - 3{\rm{x}} - 4 là tiệm cận xiên của đồ thị hàm số đã cho.