Giải bài 9 trang 102 sách bài tập toán 11 - Chân trời sáng tạo tập 2 — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo Bài tập cuối chương 9 - SBT Toán 11 CTST


Giải bài 9 trang 102 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Chọn ngẫu nhiên 2 đỉnh của một hình lục giác đều có cạnh bằng 1. Tính xác suất của biến cố “Khoảng cách giữa hai đỉnh được chọn lớn hơn \(\sqrt 3 \)”.

Đề bài

Chọn ngẫu nhiên 2 đỉnh của một hình lục giác đều có cạnh bằng 1. Tính xác suất của biến cố “Khoảng cách giữa hai đỉnh được chọn lớn hơn \(\sqrt 3 \)”.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về tính xác suất của biến cố.

Lời giải chi tiết

Số phần tử của không gian mẫu là: \(C_6^2 = 15\)

Biến cố “Khoảng cách giữa hai đỉnh được chọn lớn hơn \(\sqrt 3 \)” xảy ra khi 2 đỉnh nằm chéo nhau. Do đó, có 3 trường hợp xảy ra.

Vậy xác suất của biến cố “Khoảng cách giữa hai đỉnh được chọn lớn hơn \(\sqrt 3 \)” là: \(\frac{3}{{15}} = 0,2\)


Cùng chủ đề:

Giải bài 9 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 9 trang 85 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 9 trang 91 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 9 trang 95 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 9 trang 100 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 9 trang 102 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 10 trang 9 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 10 trang 9 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 10 trang 15 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 10 trang 18 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 10 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1