Giải bài tập 2.30 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho hình bình hành ABCD có A(−1;0;3),B(2;1;−1) và C(3;2;2). Tọa độ của điểm D là A. (2;−1;0). B. (0;−1;−6). C. (0;1;6). D. (−2;1;0).
Đề bài
Trong không gian Oxyz, cho hình bình hành ABCD có A(−1;0;3),B(2;1;−1) và C(3;2;2). Tọa độ của điểm D là A. (2;−1;0). B. (0;−1;−6). C. (0;1;6). D. (−2;1;0).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tọa độ của vectơ trong không gian để tìm tọa độ điểm D: Trong không gian, cho hai vectơ →a=(x;y;z) và →b=(x′;y′;z′). Khi đó, →a=→b nếu và chỉ nếu {x=x′y=y′z=z′.
Lời giải chi tiết
Ta có: →AB(3;1;−4). Gọi tọa độ của điểm D là D(x; y; z) thì →DC(3−x;2−y;2−z)
Vì ABCD là hình bình hành nên →AB=→DC⇒{3=3−x1=2−y−4=2−z⇒{x=0y=1z=6
Do đó, tọa độ của điểm D là (0;1;6)
Chọn C
Cùng chủ đề:
Giải bài tập 2. 30 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức