Giải bài tập 4. 5 trang 10 SGK Toán 12 tập 2 - Cùng khám phá — Không quảng cáo

Toán 12 Cùng khám phá


Giải bài tập 4.5 trang 10 SGK Toán 12 tập 2 - Cùng khám phá

Biết \(F(x) = {e^x} + {x^2}\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và hàm số \(f'(x)\) liên tục trên \(\mathbb{R}\). Tìm \(\int {f'} (x){\mkern 1mu} dx\).

Đề bài

Biết \(F(x) = {e^x} + {x^2}\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và hàm số \(f'(x)\) liên tục trên \(\mathbb{R}\). Tìm \(\int {f'} (x){\mkern 1mu} dx\).

Phương pháp giải - Xem chi tiết

Tính đạo hàm của \(F(x)\) để tìm hàm số \(f(x)\), sau đó tích phân \(f'(x)\) để tìm kết quả.

Lời giải chi tiết

Đạo hàm của \(F(x)\):

\(f(x) = F'(x) = {e^x} + 2x\)

Do đó:

\(\int {f'} (x){\mkern 1mu} dx = f(x) + C = {e^x} + 2x + C\)


Cùng chủ đề:

Giải bài tập 3. 19 trang 106 SGK Toán 12 tập 1 - Cùng khám phá
Giải bài tập 4. 1 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 2 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 3 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 4 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 5 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 6 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 7 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 8 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 9 trang 10 SGK Toán 12 tập 2 - Cùng khám phá
Giải bài tập 4. 10 trang 19 SGK Toán 12 tập 2 - Cùng khám phá