Cho hình chóp tứ giác \(S.ABCD\) có \(ABCD\) là hình bình hành.
Cho hình tứ diện \(ABCD\). Giao tuyến của hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {CDA} \right)\) là đường thẳng:
Một đồ vật trang trí có bốn mặt phân biệt là các tam giác (xem hình dưới đây). Vẽ hình hiểu diễn của đồ vật đó.
Cho tứ diện \(ABCD\). Gọi \(M,{\rm{ }}N\) lần lượt là trung điểm của \(AB,{\rm{ }}CD\).
Cho hai mặt phẳng \(\left( P \right),{\rm{ }}\left( Q \right)\) cắt nhau theo giao tuyến \(d\) và hai đường thẳng \(a,{\rm{ }}b\) lần lượt nằm trong \(\left( P \right),{\rm{ }}\left( Q \right)\).
Cho tứ diện \(ABCD\). Trên các cạnh \(AC,{\rm{ }}CD\) lần lượt lấy các điểm \(E,{\rm{ }}F\) sao cho \(CE = 3EA,{\rm{ }}DF = 2FC\).
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,{\rm{ }}N,{\rm{ }}P\) lần lượt là trung điểm của các cạnh \(SA,{\rm{ }}BC,{\rm{ }}CD\).
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,{\rm{ }}N,{\rm{ }}P\) lần lượt là trung điểm của các cạnh \(SA,{\rm{ }}SB,{\rm{ }}SC\).
Cho hình chóp tứ giác \(S.ABCD\) có đáy không là hình thang. Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Trên \(SO\) lấy điểm \(I\) sao cho \(SI = 2IO\).