Cho hình hộp \(ABCD.A'B'C'D'\). a) Chỉ ra các vectơ có điểm đầu là \(B\) và điểm cuối là các đỉnh của hình hộp không cùng nằm trên một mặt của hình hộp với điểm \(B\). b) Tìm các vectơ bằng vectơ \(\overrightarrow {BC} \). c) Tìm các vectơ đối của vectơ \(\overrightarrow {BD} \).
Cho tứ diện \(OABC\). Tìm các vectơ: a) \(\overrightarrow {OA} + \overrightarrow {AB} - \overrightarrow {OC} \); b) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} \).
Có ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc \({120^ \circ }\) và có độ lớn lần lượt là \(10N\) và \(8N\). Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn \(6N\). Tính độ lớn của hợp lực của ba lực trên.
Cho hình hộp \(ABCD.A'B'C'D'\) có \(AC'\) và \(A'C\) cắt nhau tại \(O\). Cho biết \(AO = a\). Tính theo \(a\) độ dài các vectơ: a) \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \); b) \(\overrightarrow {C'B'} + \overrightarrow {C'D'} + \overrightarrow {A'A} \).
Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \(O,O'\)lần lượt là tâm của các hình vuông \(ABCD\) và \(A'B'C'D'\); \(I\) là giao điểm của \(AC'\) và \(A'C\). Chứng minh rằng: a) \(\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} = 4\overrightarrow {OO'} \); b) \(\overrightarrow {DB} + \overrightarrow {DD'} = 2\overrightarrow {DI} \).
Cho hình hộp (ABCD.A'B'C'D') có tất cả các cạnh bằng (a) và cho biết (widehat {BAD} = widehat {BAA'} = widehat {DAA'} = {60^ circ }). Tính các tích vô hướng sau: a) (overrightarrow {AB} .overrightarrow {AD} ); b) (overrightarrow {DA} .overrightarrow {DC} ); c) (overrightarrow {AA'} .overrightarrow {AC} ).
Một tàu kéo một xà lan trên biển di chuyển được 3 km với một lực kéo có cường độ 2000 N và có phương hợp với phương dịch chuyển một góc ({30^ circ }). Tính công thực hiện bởi lực kéo nói trên (kết quả làm tròn đến hàng đơn vị của Jun).
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\). Gọi \(x,y,z\) theo thứ tự là số đo các góc hợp bởi vectơ \(\overrightarrow {AC'} \) với các vectơ \(\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AA'} \). Chứng minh \({\cos ^2}x + {\cos ^2}y + {\cos ^2}z = 1\).
Tính độ lớn của các lực căng trên mỗi sợi dây cáp trong Hình 16. Cho biết khối lượng xe là 1900 kg, gia tốc là 10 m/s, khung nâng có khối lượng 100 kg và có dạng hình chóp \(S.ABCD\) với đáy \(ABCD\) là hình chữ nhật tâm \(O\), \(AB=8m,BC=12m,SC=12m\) và \(SO\) vuông góc với \(\left( {ABCD} \right)\). Làm tròn kết quả đến hàng đơn vị của Newton.