Giải SBT Toán 12 bài 1 trang 5, 6, 7, 8, 9, 10, 11, 12, 13 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo


Bài 1 trang 10 SBT toán 12 - Chân trời sáng tạo

Tìm các khoảng đơn điệu và cực trị của các hàm số có đồ thị cho ở Hình 3.

Bài 2 trang 10 SBT toán 12 - Chân trời sáng tạo

Xét tính đơn điệu và tìm cực trị của các hàm số: a) (y = - {x^3} - 3{x^2} + 24x - 1); b) (y = {x^3} - 8{x^2} + 5x + 2); c) (y = {x^3} + 2{x^2} + 3x + 1); d) (y = - 3{x^3} + 3{x^2} - x + 2).

Bài 3 trang 10 SBT toán 12 - Chân trời sáng tạo

Xét tính đơn điệu và tìm cực trị của các hàm số: a) (y = frac{{3{rm{x}} + 1}}{{{rm{x}} - 2}}); b) (y = frac{{2{rm{x}} - 5}}{{3{rm{x}} + 1}}); c) (y = sqrt {4 - {x^2}} ); d) (y = x - ln {rm{x}}).

Bài 4 trang 10 SBT toán 12 - Chân trời sáng tạo

Xét tính đơn điệu và tìm cực trị của các hàm số: a) (y = frac{{{x^2} + 8}}{{x + 1}}); b) (y = frac{{{x^2} - 8x + 10}}{{x - 2}}); c) (y = frac{{ - 2{x^2} + x + 2}}{{2x - 1}}); d) (y = frac{{ - {x^2} - 6x - 25}}{{x + 3}}).

Bài 5 trang 10 SBT toán 12 - Chân trời sáng tạo

Tìm (m) để a) Hàm số (y = frac{{2{rm{x}} + m}}{{{rm{x}} - 1}}) đồng biến trên từng khoảng xác định. b) Hàm số (y = frac{{ - {x^2} + 3{rm{x}} + m}}{{{rm{x}} + 2}}) nghịch biến trên từng khoảng xác định.

Bài 6 trang 11 SBT toán 12 - Chân trời sáng tạo

Đạo hàm (f'left( x right)) của hàm số (y = fleft( x right)) có đồ thị như Hình 4. Xét tính đơn điệu và tìm các điểm cực trị của hàm số (y = fleft( x right)).

Bài 7 trang 11 SBT toán 12 - Chân trời sáng tạo

Chứng minh rằng a) (tan x > x) với mọi (x in left( {0;frac{pi }{2}} right)); b) (ln x le x - 1) với mọi (x > 0).

Bài 8 trang 11 SBT toán 12 - Chân trời sáng tạo

Chứng minh rằng: a) Phương trình \({x^3} + 5{x^2} - 8{\rm{x}} + 4 = 0\) có duy nhất một nghiệm. b) Phương trình \( - {x^3} + 3{x^2} + 24x - 1 = 0\) có ba nghiệm phân biệt.

Bài 9 trang 11 SBT toán 12 - Chân trời sáng tạo

Tìm \(m\) để phương trình \(\frac{{{x^2} + x + 4}}{{x + 1}} = m\) có hai nghiệm phân biệt.

Bài 10 trang 11 SBT toán 12 - Chân trời sáng tạo

Một chất điểm chuyển động lên, xuống theo phương thẳng đứng. Độ cao \(h\left( t \right)\) của chất điểm tại thời điểm \(t\) (giây) được cho bởi công thức \(h\left( t \right) = \frac{1}{3}{t^3} - 4{t^2} + 12t + 1\) với \(0 \le t \le 8\). a) Viết công thức tính vận tốc của chất điểm. b) Trong khoảng thời gian nào chất điểm chuyển động lên, trong thời gian nào chất điểm chuyển động đi xuống?

Bài 11 trang 11 SBT toán 12 - Chân trời sáng tạo

Độ cao (tính bằng mét) của tàu lượn siêu tốc so với mặt đất sau \(t\)(giây) \(\left( {0 \le t \le 20} \right)\) từ lúc bắt đầu được cho bởi công thức \(h\left( t \right) = - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\). Trong khoảng thời gian nào tàu lượn đi xuống, trong khoảng thời gian nào tàu lượn đi lên?

Bài 12 trang 12 SBT toán 12 - Chân trời sáng tạo

Cho điểm \(A\) di động trên nửa đường tròn tâm \(O\) đường kính \(MN = 20{\rm{ }}cm,\widehat {MOA} = \alpha \) với \(0 \le \alpha \le \pi \). Lấy điểm \(B\) thuộc nửa đường tròn và \(C,D\) thuộc đường kính \(MN\) được xác định sao cho \(ABCD\) là hình chữ nhật. Khi \(A\) di động từ trái sang phải, trong các khoảng nào của \(\alpha \) thì diện tích của hình chữ nhật \(ABCD\) tăng, trong các khoảng nào của \(\alpha \) thì diện tích của hình chữ nhật \(ABCD\) giảm?

Bài 13 trang 12 SBT toán 12 - Chân trời sáng tạo

Người ta thấy rằng trong vòng 3 năm tính từ đầu năm 2020, giá thành (P) của một loại sản phẩm vào tháng thứ (t) thay đổi theo công thức (Pleft( t right) = 80{t^3} - 3600{t^2} + 48000t + 100000) (đồng) với (0 le t le 36). Hãy cho biết trong khoảng thời gian nào giá thành sản phẩm tăng, trong khoảng thời gian nào giá thành sản phẩm giảm. Giá thành đạt cực đại và cực tiểu vào thời điểm nào?

Bài 14 trang 12 SBT toán 12 - Chân trời sáng tạo

Một cửa hàng ước tính số lượng sản phẩm \(q\left( {0 \le q \le 100} \right)\) bán được phụ thuộc vào giá bán \(p\) (tính bằng nghìn đồng) theo công thức \(p + 2q = 300\). Chi phí cửa hàng cần chi để nhập về \(q\) sản phẩm là \(C\left( q \right) = 0,05{q^3} - 5,7{q^2} + 295q + 300\) (nghìn đồng). a) Viết công thức tính lợi nhuận \(I\) của cửa hàng khi nhập về và bán được \(q\) sản phẩm. b) Trong khoảng nào của \(q\) thì lợi nhuận sẽ tăng khi \(q\) tăng, trong khoảng nào thì lợi nhuận giảm kh


Cùng chủ đề:

Giải SBT Toán 12 bài 1 trang 5, 6, 7, 8, 9, 10 - Chân trời sáng tạo
Giải SBT Toán 12 bài 1 trang 5, 6, 7, 8, 9, 10, 11, 12, 13 - Chân trời sáng tạo
Giải SBT Toán 12 bài 1 trang 39, 40, 41, 42, 43, 44, 45, 46 - Chân trời sáng tạo
Giải SBT Toán 12 bài 1 trang 57, 58, 59, 60, 61, 62, 63, 64, 65 - Chân trời sáng tạo
Giải SBT Toán 12 bài 1 trang 75, 76, 77, 78, 79, 80, 81 - Chân trời sáng tạo
Giải SBT Toán 12 bài 1 trang 90, 91, 92, 93, 9, 95, 96, 97, 98 - Chân trời sáng tạo
Giải SBT Toán 12 bài 2 trang 10, 11, 12, 13, 14, 15, 16 - Chân trời sáng tạo