Tam giác ABC vuông tại A thì: A. (sin B + cos C = 0). B. (sin C + cos B = 0). C. (sin B - cos C = 0). D. (cos B + cos C = 0).
Chứng minh nếu một góc nhọn của một tam giác vuông có số đo gấp đôi số đo góc nhọn kia thì tam giác đó có một cạnh dài gấp đôi một trong hai cạnh còn lại.
Xét điểm B nằm giữa hai điểm A và H. Giả sử có điểm D sao cho DH vuông góc với AB và (widehat {DAH} = {15^o},widehat {DBH} = {30^o}). Chứng minh rằng (HD = frac{{AB}}{2}).
Cho hai tòa nhà cách nhau 32m. Tại điểm A trên nóc tòa nhà cao nhìn xuống nóc D và chân C của tòa nhà thấp lần lượt theo các góc ({15^o}) và ({43^o}) (so với phương nằm ngang) (H.4.16). Tính chiều cao của hai tòa nhà đó (làm tròn đến m).
Chiều cao từ mặt đất đến đỉnh tháp Pisa ở Italia là 58m, tháp nghiêng góc ({5^o}30') đối với phương thẳng đứng (H.4.17). Khi Mặt Trời chiếu vuông góc với mặt đất thì bóng của tháp dài bao nhiêu decimét?
Cho tam giác ABC có đường cao AH, (widehat B = {60^o},widehat C = {45^o}) và cạnh (BC = 6cm). Chứng minh rằng (AH = 3left( {3 - sqrt 3 } right)cm).
Tính khoảng cách giữa hai địa điểm A, B ở hai bên hồ nước (không đo trực tiếp được), biết khoảng cách từ một địa điểm C đến A và đến B là (CA = 90m), (CB = 150m,;widehat {CAB} = {120^o}) (làm tròn đến m) (H.4.18).
Một cầu thủ đứng cách khung thành 18m, đá quả bóng sát mặt đất, nghiêng một góc ({20^o}) so với phương vuông góc với khung thành, tới điểm M của khung thành (H.4.19). Tính khoảng cách từ cầu thủ đến điểm M (làm tròn đến dm).
Hai chiếc thuyền A và B ở vị trí được minh họa như trong Hình 4.20. Tính khoảng cách giữa chúng (làm tròn đến m), biết (IK = 380m).
Tìm độ dài dây cáp mắc giữa hai cọc ở vị trí C, D trên hai bên bờ vực như trong Hình 4.21 (làm tròn đến mét).
Một người đứng cách chân ngọn hải đăng 50m, nhìn xuống chân hải đăng dưới góc ({2^o}) và nhìn lên đỉnh ngọn hải đăng dưới góc ({45^o}) (so với phương nằm ngang) (H.4.22). Tính chiều cao ngọn hải đăng (làm tròn đến mét).