1. Mặt phẳng
Mặt bàn, mặt bảng cho ta hình ảnh một phần của mặt phẳng. Hãy chỉ thêm các ví dụ khác về hình ảnh một phần của mặt phẳng.
Quan sát Hình 5 và cho biết muốn gác một cây sao tập nhảy cao, người ta cần dựa nó vào mấy điểm trên hai cọc đỡ.
Cho đường thẳng \(a\) và điểm \(A\) không nằm trên \(a\). Trên \(a\) lấy hai điểm \(B,C\). Đường thẳng \(a\) có nằm trong mặt phẳng \(\left( {ABC} \right)\) không? Giải thích.
a) Các công trình kiến trúc, đồ vật trong Hình 30 có mặt bên là hình gì?
Cho hình chóp \(S.ABCD\), gọi \(O\) là giao điểm của \(AC\) và \(B{\rm{D}}\). Lấy \(M,N\) lần lượt thuộc các cạnh \(SA,SC\). a) Chứng minh đường thẳng \(MN\) nằm trong mặt phẳng \(\left( {SAC} \right)\). b) Chứng minh \(O\) là điểm chung của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SB{\rm{D}}} \right)\).
Cho hình chóp (S.ABCD) có đáy là hình bình hành. Gọi (M) là trung điểm của (SC).
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(O\) là giao điểm của \(AC\) và \(BD\); \(M,N\) lần lượt là trung điểm của \(SB,SD\); \(P\) thuộc đoạn \(SC\) và không là trung điểm của \(SC\).
Cho tứ diện \(ABCD\). Gọi \(E,F,G\) lần lượt là ba điểm trên ba cạnh \(AB,AC,BD\) sao cho \(EF\) cắt \(BC\) tại \(I\left( {I \ne C} \right)\), \(EG\) cắt \(A{\rm{D}}\) tại \(H\left( {H \ne D} \right)\).
Thước laser phát ra tia laser, khi tia này quay sẽ tạo ra mặt phẳng ánh sáng (Hình 41). Giải thích tại sao các thước kẻ laser lại giúp người thợ xây dựng kẻ được đường thẳng trên tường hoặc sàn nhà.