Trắc nghiệm Các dạng toán về phép cộng và phép trừ phân số Toán 6 Chân trời sáng tạo
Đề bài
Thực hiện phép tính \(\dfrac{{65}}{{91}} + \dfrac{{ - 44}}{{55}}\) ta được kết quả là
-
A.
$\dfrac{{ - 53}}{{35}}$
-
B.
\(\dfrac{{51}}{{35}}\)
-
C.
\(\dfrac{{ - 3}}{{35}}\)
-
D.
\(\dfrac{3}{{35}}\)
Chọn câu đúng.
-
A.
$\dfrac{{ - 4}}{{11}} + \dfrac{7}{{ - 11}} > 1$
-
B.
$\dfrac{{ - 4}}{{11}} + \dfrac{7}{{ - 11}} < 0$
-
C.
$\dfrac{8}{{11}} + \dfrac{7}{{ - 11}} > 1$
-
D.
$\dfrac{{ - 4}}{{11}} + \dfrac{{ - 7}}{{11}} > - 1$
Tìm \(x\) biết \(x = \dfrac{3}{{13}} + \dfrac{9}{{20}}.\)
-
A.
\(\dfrac{{12}}{{33}}\)
-
B.
\(\dfrac{{177}}{{260}}\)
-
C.
\(\dfrac{{187}}{{260}}\)
-
D.
\(\dfrac{{177}}{{26}}\)
Tính hợp lý biểu thức \(\dfrac{{ - 9}}{7} + \dfrac{{13}}{4} + \dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{3}{4}\) ta được kết quả là
-
A.
$\dfrac{9}{5}$
-
B.
\(\dfrac{{11}}{5}\)
-
C.
\(\dfrac{{ - 11}}{5}\)
-
D.
\(\dfrac{{ - 1}}{5}\)
Cho \(A = \left( {\dfrac{1}{4} + \dfrac{{ - 5}}{{13}}} \right) + \left( {\dfrac{2}{{11}} + \dfrac{{ - 8}}{{13}} + \dfrac{3}{4}} \right)\). Chọn câu đúng.
-
A.
$A > 1$
-
B.
\(A = \dfrac{2}{{11}}\)
-
C.
\(A = 1\)
-
D.
\(A = 0\)
Cho \(M = \left( {\dfrac{{21}}{{31}} + \dfrac{{ - 16}}{7}} \right) + \left( {\dfrac{{44}}{{53}} + \dfrac{{10}}{{31}}} \right) + \dfrac{9}{{53}}\) và \(N = \dfrac{1}{2} + \dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{1}{6} + \dfrac{{ - 3}}{{35}} + \dfrac{1}{3} + \dfrac{1}{{41}}\). Chọn câu đúng.
-
A.
$M = \dfrac{2}{7};N = \dfrac{1}{{41}}$
-
B.
$M = 0;N = \dfrac{1}{{41}}$
-
C.
\(M = \dfrac{{ - 16}}{7};N = \dfrac{{83}}{{41}}\)
-
D.
$M = - \dfrac{2}{7};N = \dfrac{1}{{41}}$
Tìm \(x \in Z\) biết \(\dfrac{5}{6} + \dfrac{{ - 7}}{8} \le \dfrac{x}{{24}} \le \dfrac{{ - 5}}{{12}} + \dfrac{5}{8}\).
-
A.
\(x \in \left\{ {0;1;2;3;4} \right\}\)
-
B.
\(x \in \left\{ { - 1;0;1;2;3;4;5} \right\}\)
-
C.
\(x \in \left\{ { - 1;0;1;2;3;4} \right\}\)
-
D.
\(x \in \left\{ {0;1;2;3;4;5} \right\}\)
Tìm tập hợp các số nguyên \(n\) để \(\dfrac{{n - 8}}{{n + 1}} + \dfrac{{n + 3}}{{n + 1}}\) là một số nguyên
-
A.
\(n \in \left\{ {1; - 1;7; - 7} \right\}\)
-
B.
\(n \in \left\{ {0;6} \right\}\)
-
C.
\(n \in \left\{ {0; - 2;6; - 8} \right\}\)
-
D.
\(n \in \left\{ { - 2;6; - 8} \right\}\)
Có bao nhiêu số nguyên \(x\) thỏa mãn \(\dfrac{{15}}{{41}} + \dfrac{{ - 138}}{{41}} \le x < \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{6}?\)
-
A.
$6$
-
B.
\(3\)
-
C.
\(5\)
-
D.
\(4\)
Tính tổng \(A = \dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{{12}} + \ldots + \dfrac{1}{{99.100}}\) ta được
-
A.
$S > \dfrac{3}{5}$
-
B.
\(S < \dfrac{4}{5}\)
-
C.
\(S > \dfrac{4}{5}\)
-
D.
Cả A, C đều đúng
Cho \(S = \dfrac{1}{{21}} + \dfrac{1}{{22}} + \dfrac{1}{{23}} + ... + \dfrac{1}{{35}}\). Chọn câu đúng.
-
A.
\(S > \dfrac{1}{2}\)
-
B.
\(S < 0\)
-
C.
\(S = \dfrac{1}{2}\)
-
D.
\(S = 2\)
Có bao nhiêu cặp số \(a;b \in Z\) thỏa mãn \(\dfrac{a}{5} + \dfrac{1}{{10}} = \dfrac{{ - 1}}{b}\)?
-
A.
\(0\)
-
B.
Không tồn tại \((a;b)\)
-
C.
\(4\)
-
D.
\(10\)
Kết quả của phép tính \(\dfrac{3}{4} - \dfrac{7}{{20}}\) là
-
A.
$\dfrac{1}{{10}}$
-
B.
$\dfrac{4}{5}$
-
C.
\(\dfrac{2}{5}\)
-
D.
\(\dfrac{{ - 1}}{{10}}\)
Giá trị của \(x\) thỏa mãn \(\dfrac{{15}}{{20}} - x = \dfrac{7}{{16}}\) là
-
A.
$ - \dfrac{5}{{16}}$
-
B.
\(\dfrac{5}{{16}}\)
-
C.
\(\dfrac{{19}}{{16}}\)
-
D.
\( - \dfrac{{19}}{{16}}\)
Tính \(\dfrac{4}{{15}} - \dfrac{2}{{65}} - \dfrac{4}{{39}}\) ta được
-
A.
$\dfrac{1}{{39}}$
-
B.
\(\dfrac{2}{{15}}\)
-
C.
\(\dfrac{{ - 2}}{{65}}\)
-
D.
\(\dfrac{1}{{15}}\)
Tính hợp lý \(B = \dfrac{{31}}{{23}} - \left( {\dfrac{7}{{30}} + \dfrac{8}{{23}}} \right)\) ta được
-
A.
$\dfrac{{23}}{{30}}$
-
B.
\(\dfrac{7}{{30}}\)
-
C.
\( - \dfrac{7}{{30}}\)
-
D.
\( - \dfrac{{23}}{{30}}\)
Cho \(M = \left( {\dfrac{1}{3} + \dfrac{{12}}{{67}} + \dfrac{{13}}{{41}}} \right) - \left( {\dfrac{{79}}{{67}} - \dfrac{{28}}{{41}}} \right)\) và \(N = \dfrac{{38}}{{45}} - \left( {\dfrac{8}{{45}} - \dfrac{{17}}{{51}} - \dfrac{3}{{11}}} \right)\) . Chọn câu đúng.
-
A.
$M = N$
-
B.
\(N < 1 < M\)
-
C.
\(1 < M < N\)
-
D.
\(M < 1 < N\)
Tìm \(x\) sao cho \(x - \dfrac{{ - 7}}{{12}} = \dfrac{{17}}{{18}} - \dfrac{1}{9}\).
-
A.
$ - \dfrac{1}{4}$
-
B.
\(\dfrac{{17}}{{12}}\)
-
C.
\(\dfrac{1}{4}\)
-
D.
\( - \dfrac{{17}}{{12}}\)
Giá trị nào của \(x\) dưới đây thỏa mãn \(\dfrac{{29}}{{30}} - \left( {\dfrac{{13}}{{23}} + x} \right) = \dfrac{7}{{69}}\) ?
-
A.
$\dfrac{3}{{10}}$
-
B.
\(\dfrac{{13}}{{23}}\)
-
C.
\(\dfrac{2}{5}\)
-
D.
\( - \dfrac{3}{{10}}\)
Có bao nhiêu số nguyên \(x\) thỏa mãn \(\dfrac{{ - 5}}{{14}} - \dfrac{{37}}{{14}} \le x \le \dfrac{{31}}{{73}} - \dfrac{{31313131}}{{73737373}}\) ?
-
A.
$3$
-
B.
\(5\)
-
C.
\(4\)
-
D.
\(1\)
Hai vòi nước cùng chảy vào một bể cạn. Vòi thứ nhất chảy riêng trong \(10\) giờ đầy bể, vòi thứ hai chảy riêng trong \(8\) giờ đầy bể. Vòi thứ ba tháo nước ra sau \(5\) giờ thì bể cạn. Nếu bể đang cạn, ta mở cả ba vòi thì sau \(1\) giờ chảy được bao nhiêu phần bể?
-
A.
$\dfrac{{17}}{{40}}$
-
B.
\(\dfrac{1}{{40}}\)
-
C.
\(\dfrac{1}{{13}}\)
-
D.
\(1\)
Cho \(x\) là số thỏa mãn \(x + \dfrac{4}{{5.9}} + \dfrac{4}{{9.13}} + \dfrac{4}{{13.17}} + ... + \dfrac{4}{{41.45}} = \dfrac{{ - 37}}{{45}}\) . Chọn kết luận đúng:
-
A.
$x$ nguyên âm
-
B.
\(x = 0\)
-
C.
\(x\) nguyên dương
-
D.
\(x\) là phân số dương
Cho \(P = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + ... + \dfrac{1}{{{{2002}^2}}} + \dfrac{1}{{{{2003}^2}}}\) . Chọn câu đúng.
-
A.
$P > 1$
-
B.
\(P > 2\)
-
C.
\(P < 1\)
-
D.
\(P < 0\)
Lời giải và đáp án
Thực hiện phép tính \(\dfrac{{65}}{{91}} + \dfrac{{ - 44}}{{55}}\) ta được kết quả là
-
A.
$\dfrac{{ - 53}}{{35}}$
-
B.
\(\dfrac{{51}}{{35}}\)
-
C.
\(\dfrac{{ - 3}}{{35}}\)
-
D.
\(\dfrac{3}{{35}}\)
Đáp án : C
Bước 1: Rút gọn các phân số đến tối giản (nếu có thể) Bước 2: Quy đồng mẫu số các phân số sau khi rút gọn Bước 3: Thực hiện cộng hai phân số cùng mẫu ta cộng tử số với tử số, giữ nguyên mẫu số
\(\dfrac{{65}}{{91}} + \dfrac{{ - 44}}{{55}} = \dfrac{5}{7} + \dfrac{{ - 4}}{5}\)\( = \dfrac{{25}}{{35}} + \dfrac{{ - 28}}{{35}} = \dfrac{{ - 3}}{{35}}\)
Chọn câu đúng.
-
A.
$\dfrac{{ - 4}}{{11}} + \dfrac{7}{{ - 11}} > 1$
-
B.
$\dfrac{{ - 4}}{{11}} + \dfrac{7}{{ - 11}} < 0$
-
C.
$\dfrac{8}{{11}} + \dfrac{7}{{ - 11}} > 1$
-
D.
$\dfrac{{ - 4}}{{11}} + \dfrac{{ - 7}}{{11}} > - 1$
Đáp án : B
Thực hiện các phép tính ở mỗi đáp án và kết luận.
Đáp án A: $\dfrac{{ - 4}}{{11}} + \dfrac{7}{{ - 11}} = \dfrac{{ - 4}}{{11}} + \dfrac{{ - 7}}{{11}} = \dfrac{{ - 11}}{{11}} = - 1 < 1$ nên \(A\) sai
Đáp án B: $\dfrac{{ - 4}}{{11}} + \dfrac{7}{{ - 11}} = \dfrac{{ - 4}}{{11}} + \dfrac{{ - 7}}{{11}} = \dfrac{{ - 11}}{{11}} = - 1 < 0$ nên \(B\) đúng.
Đáp án C: $\dfrac{8}{{11}} + \dfrac{7}{{ - 11}} = \dfrac{8}{{11}} + \dfrac{{ - 7}}{{11}} = \dfrac{1}{{11}} < 1$ nên \(C\) sai.
Đáp án D: $\dfrac{{ - 4}}{{11}} + \dfrac{{ - 7}}{{11}} = \dfrac{{ - 11}}{{11}} = - 1$ nên \(D\) sai.
Tìm \(x\) biết \(x = \dfrac{3}{{13}} + \dfrac{9}{{20}}.\)
-
A.
\(\dfrac{{12}}{{33}}\)
-
B.
\(\dfrac{{177}}{{260}}\)
-
C.
\(\dfrac{{187}}{{260}}\)
-
D.
\(\dfrac{{177}}{{26}}\)
Đáp án : B
Bước 1: Quy đồng mẫu số hai phân số Bước 2: Thực hiện cộng hai phân số cùng mẫu
\(\dfrac{3}{{13}} + \dfrac{9}{{20}} = \dfrac{{60}}{{260}} + \dfrac{{117}}{{260}} = \dfrac{{177}}{{260}}\)
Vậy \(x = \dfrac{{177}}{{260}}\)
Tính hợp lý biểu thức \(\dfrac{{ - 9}}{7} + \dfrac{{13}}{4} + \dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{3}{4}\) ta được kết quả là
-
A.
$\dfrac{9}{5}$
-
B.
\(\dfrac{{11}}{5}\)
-
C.
\(\dfrac{{ - 11}}{5}\)
-
D.
\(\dfrac{{ - 1}}{5}\)
Đáp án : A
Nhóm các số hạng thích hợp thành một tổng có thể tính.
\(\dfrac{{ - 9}}{7} + \dfrac{{13}}{4} + \dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{3}{4}\)
\( = \left( {\dfrac{{ - 9}}{7} + \dfrac{{ - 5}}{7}} \right) + \left( {\dfrac{{13}}{4} + \dfrac{3}{4}} \right) + \dfrac{{ - 1}}{5}\)
\( = \dfrac{{ - 14}}{7} + \dfrac{{16}}{4} + \dfrac{{ - 1}}{5}\)
\( = \left( { - 2} \right) + 4 + \dfrac{{ - 1}}{5}\)
\( = 2 + \dfrac{{ - 1}}{5}\)
\( = \dfrac{{10}}{5} + \dfrac{{ - 1}}{5}\)
\( = \dfrac{9}{5}\)
Cho \(A = \left( {\dfrac{1}{4} + \dfrac{{ - 5}}{{13}}} \right) + \left( {\dfrac{2}{{11}} + \dfrac{{ - 8}}{{13}} + \dfrac{3}{4}} \right)\). Chọn câu đúng.
-
A.
$A > 1$
-
B.
\(A = \dfrac{2}{{11}}\)
-
C.
\(A = 1\)
-
D.
\(A = 0\)
Đáp án : B
Áp dụng tính chất giao hoán và kết hợp của phép cộng phân số, gộp các cặp phân số có tổng bằng $0$ hoặc bằng $1$ lại thành từng nhóm.
\(A = \left( {\dfrac{1}{4} + \dfrac{{ - 5}}{{13}}} \right) + \left( {\dfrac{2}{{11}} + \dfrac{{ - 8}}{{13}} + \dfrac{3}{4}} \right)\)
\(A = \dfrac{1}{4} + \dfrac{{ - 5}}{{13}} + \dfrac{2}{{11}} + \dfrac{{ - 8}}{{13}} + \dfrac{3}{4}\)
\(A = \left( {\dfrac{1}{4} + \dfrac{3}{4}} \right) + \left( {\dfrac{{ - 5}}{{13}} + \dfrac{{ - 8}}{{13}}} \right) + \dfrac{2}{{11}}\)
\(A = 1 + \left( { - 1} \right) + \dfrac{2}{{11}}\)
\(A = \dfrac{2}{{11}}\)
Cho \(M = \left( {\dfrac{{21}}{{31}} + \dfrac{{ - 16}}{7}} \right) + \left( {\dfrac{{44}}{{53}} + \dfrac{{10}}{{31}}} \right) + \dfrac{9}{{53}}\) và \(N = \dfrac{1}{2} + \dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{1}{6} + \dfrac{{ - 3}}{{35}} + \dfrac{1}{3} + \dfrac{1}{{41}}\). Chọn câu đúng.
-
A.
$M = \dfrac{2}{7};N = \dfrac{1}{{41}}$
-
B.
$M = 0;N = \dfrac{1}{{41}}$
-
C.
\(M = \dfrac{{ - 16}}{7};N = \dfrac{{83}}{{41}}\)
-
D.
$M = - \dfrac{2}{7};N = \dfrac{1}{{41}}$
Đáp án : D
Áp dụng tính chất giao hoán và kết hợp của phép cộng phân số, gộp các cặp phân số có tổng bằng $0$ hoặc bằng $1$ lại thành từng nhóm.
\(M = \left( {\dfrac{{21}}{{31}} + \dfrac{{ - 16}}{7}} \right) + \left( {\dfrac{{44}}{{53}} + \dfrac{{10}}{{31}}} \right) + \dfrac{9}{{53}}\)
\(M = \dfrac{{21}}{{31}} + \dfrac{{ - 16}}{7} + \dfrac{{44}}{{53}} + \dfrac{{10}}{{31}} + \dfrac{9}{{53}}\)
\(M = \left( {\dfrac{{21}}{{31}} + \dfrac{{10}}{{31}}} \right) + \left( {\dfrac{{44}}{{53}} + \dfrac{9}{{53}}} \right) + \dfrac{{ - 16}}{7}\)
\(M = 1 + 1 + \dfrac{{ - 16}}{7}\)
\(M = 2 + \dfrac{{ - 16}}{7}\)
\(M = \dfrac{{ - 2}}{7}\)
\(N = \dfrac{1}{2} + \dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{1}{6} + \dfrac{{ - 3}}{{35}} + \dfrac{1}{3} + \dfrac{1}{{41}}\)
\(N = \left( {\dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{3}} \right) + \left( {\dfrac{{ - 1}}{5} + \dfrac{{ - 5}}{7} + \dfrac{{ - 3}}{{35}}} \right) + \dfrac{1}{{41}}\)
\(N = \dfrac{{3 + 1 + 2}}{6} + \dfrac{{\left( { - 7} \right) + \left( { - 25} \right) + \left( { - 3} \right)}}{{35}} + \dfrac{1}{{41}}\)
\(N = 1 + \left( { - 1} \right) + \dfrac{1}{{41}}\)
\(N = \dfrac{1}{{41}}\)
Tìm \(x \in Z\) biết \(\dfrac{5}{6} + \dfrac{{ - 7}}{8} \le \dfrac{x}{{24}} \le \dfrac{{ - 5}}{{12}} + \dfrac{5}{8}\).
-
A.
\(x \in \left\{ {0;1;2;3;4} \right\}\)
-
B.
\(x \in \left\{ { - 1;0;1;2;3;4;5} \right\}\)
-
C.
\(x \in \left\{ { - 1;0;1;2;3;4} \right\}\)
-
D.
\(x \in \left\{ {0;1;2;3;4;5} \right\}\)
Đáp án : B
Tính các tổng đã cho ở mỗi vế rồi suy ra \(x\) dựa vào quy tắc so sánh hai phân số cùng mẫu số dương, phân số nào lớn hơn thì có tử số lớn hơn.
\(\dfrac{5}{6} + \dfrac{{ - 7}}{8} \le \dfrac{x}{{24}} \le \dfrac{{ - 5}}{{12}} + \dfrac{5}{8}\)
\(\dfrac{{ - 1}}{{24}} \le \dfrac{x}{{24}} \le \dfrac{5}{{24}}\)
\( - 1 \le x \le 5\)
\(x \in \left\{ { - 1;0;1;2;3;4;5} \right\}\)
Tìm tập hợp các số nguyên \(n\) để \(\dfrac{{n - 8}}{{n + 1}} + \dfrac{{n + 3}}{{n + 1}}\) là một số nguyên
-
A.
\(n \in \left\{ {1; - 1;7; - 7} \right\}\)
-
B.
\(n \in \left\{ {0;6} \right\}\)
-
C.
\(n \in \left\{ {0; - 2;6; - 8} \right\}\)
-
D.
\(n \in \left\{ { - 2;6; - 8} \right\}\)
Đáp án : C
- Rút gọn biểu thức bài cho rồi chia tách về dạng \(a \pm \dfrac{b}{{n + 1}}\) với \(a,b \in Z\)
- Để giá trị biểu thức là một số nguyên thì \(n + 1 \in Ư\left( b \right)\)
Ta có:
\(\dfrac{{n - 8}}{{n + 1}} + \dfrac{{n + 3}}{{n + 1}}\) \( = \dfrac{{n - 8 + n + 3}}{{n + 1}}\) \( = \dfrac{{2n - 5}}{{n + 1}}\) \( = \dfrac{{\left( {2n + 2} \right) - 7}}{{n + 1}}\) \( = \dfrac{{2\left( {n + 1} \right) - 7}}{{n + 1}}\) \( = \dfrac{{2\left( {n + 1} \right)}}{{n + 1}} - \dfrac{7}{{n + 1}}\) \( = 2 - \dfrac{7}{{n + 1}}\)
Yêu cầu bài toán thỏa mãn nếu \(\dfrac{7}{{n + 1}} \in Z\) hay \(n + 1 \in Ư\left( 7 \right) = \left\{ { \pm 1; \pm 7} \right\}\)
Ta có bảng:
Vậy \(n \in \left\{ {0; - 2;6; - 8} \right\}\)
Có bao nhiêu số nguyên \(x\) thỏa mãn \(\dfrac{{15}}{{41}} + \dfrac{{ - 138}}{{41}} \le x < \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{6}?\)
-
A.
$6$
-
B.
\(3\)
-
C.
\(5\)
-
D.
\(4\)
Đáp án : D
Tính các tổng ở mỗi vế rồi suy ra tập hợp giá trị của \(x\)
\(\dfrac{{15}}{{41}} + \dfrac{{ - 138}}{{41}} \le x < \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{6}\)
\( - 3 \le x < 1\)
\(x \in \left\{ { - 3; - 2; - 1;0} \right\}\)
Vậy có tất cả \(4\) giá trị của \(x\)
Tính tổng \(A = \dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{{12}} + \ldots + \dfrac{1}{{99.100}}\) ta được
-
A.
$S > \dfrac{3}{5}$
-
B.
\(S < \dfrac{4}{5}\)
-
C.
\(S > \dfrac{4}{5}\)
-
D.
Cả A, C đều đúng
Đáp án : D
- Tính tổng \(A\) bằng cách áp dụng công thức \(\dfrac{1}{{n.(n + 1)}} = \dfrac{1}{n} - \dfrac{1}{{n + 1}}\)
- So sánh \(A\) với \(\dfrac{3}{5}\) và \(\dfrac{4}{5}\) rồi kết luận.
\(A = \dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{{12}} + \ldots + \dfrac{1}{{99.100}}\)
\(A = \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + ... + \dfrac{1}{{99.100}}\)
\(A = 1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + ... + \dfrac{1}{{99}} - \dfrac{1}{{100}}\)
\(A = 1 - \dfrac{1}{{100}} = \dfrac{{99}}{{100}}\)
So sánh \(A\) với \(\dfrac{3}{5}\) và \(\dfrac{4}{5}\)
Ta có: \(\dfrac{3}{5} = \dfrac{{60}}{{100}};\dfrac{4}{5} = \dfrac{{80}}{{100}}\)
\( \Rightarrow \dfrac{{60}}{{100}} < \dfrac{{80}}{{100}} < \dfrac{{99}}{{100}}\) \( \Rightarrow A > \dfrac{4}{5} > \dfrac{3}{5}\)
Cho \(S = \dfrac{1}{{21}} + \dfrac{1}{{22}} + \dfrac{1}{{23}} + ... + \dfrac{1}{{35}}\). Chọn câu đúng.
-
A.
\(S > \dfrac{1}{2}\)
-
B.
\(S < 0\)
-
C.
\(S = \dfrac{1}{2}\)
-
D.
\(S = 2\)
Đáp án : A
Ta chia thành 3 nhóm, mỗi nhóm 5 số hạng. Sau đó đánh giá để kết luận.
\(S = \dfrac{1}{{21}} + \dfrac{1}{{22}} + \dfrac{1}{{23}} + ... + \dfrac{1}{{35}}\)
\(S = \left( {\dfrac{1}{{21}} + ... + \dfrac{1}{{25}}} \right) + \left( {\dfrac{1}{{26}} + ... + \dfrac{1}{{30}}} \right) + \left( {\dfrac{1}{{31}} + ... + \dfrac{1}{{35}}} \right)\)
\(S > \left( {\dfrac{1}{{25}} + ... + \dfrac{1}{{25}}} \right) + \left( {\dfrac{1}{{30}} + ... + \dfrac{1}{{30}}} \right) + \left( {\dfrac{1}{{35}} + ... + \dfrac{1}{{35}}} \right)\)
\(S > \dfrac{1}{5} + \dfrac{1}{6} + \dfrac{1}{7} = \dfrac{{107}}{{210}} > \dfrac{1}{2}\)
Vậy \(S > \dfrac{1}{2}\).
Có bao nhiêu cặp số \(a;b \in Z\) thỏa mãn \(\dfrac{a}{5} + \dfrac{1}{{10}} = \dfrac{{ - 1}}{b}\)?
-
A.
\(0\)
-
B.
Không tồn tại \((a;b)\)
-
C.
\(4\)
-
D.
\(10\)
Đáp án : C
Ta quy đồng phân số để tìm a, b.
\(\begin{array}{l}\dfrac{a}{5} + \dfrac{1}{{10}} = \dfrac{{ - 1}}{b}\\\dfrac{{2{\rm{a}}}}{{10}} + \dfrac{1}{{10}} = \dfrac{{ - 1}}{b}\\\dfrac{{2{\rm{a}} + 1}}{{10}} = \dfrac{{ - 1}}{b}\\\left( {2{\rm{a}} + 1} \right).b = - 10\end{array}\)
\(2{\rm{a}} + 1\) là số lẻ; \(2{\rm{a}} + 1\) là ước của \( - 10\)
Vậy có \(4\) cặp số \((a;b)\) thỏa mãn bài toán.
Kết quả của phép tính \(\dfrac{3}{4} - \dfrac{7}{{20}}\) là
-
A.
$\dfrac{1}{{10}}$
-
B.
$\dfrac{4}{5}$
-
C.
\(\dfrac{2}{5}\)
-
D.
\(\dfrac{{ - 1}}{{10}}\)
Đáp án : C
Bước 1: Quy đồng mẫu số phân số \(\dfrac{3}{4}\) với mẫu số là \(20\) Bước 3: Thực hiện trừ hai phân số cùng mẫu ta trừ tử số của phân số thứ nhất cho tử số của phân số thứ 2, giữ nguyên mẫu số.
\(\dfrac{3}{4} - \dfrac{7}{{20}} = \dfrac{{15}}{{20}} - \dfrac{7}{{20}} = \dfrac{8}{{20}} = \dfrac{2}{5}\)
Giá trị của \(x\) thỏa mãn \(\dfrac{{15}}{{20}} - x = \dfrac{7}{{16}}\) là
-
A.
$ - \dfrac{5}{{16}}$
-
B.
\(\dfrac{5}{{16}}\)
-
C.
\(\dfrac{{19}}{{16}}\)
-
D.
\( - \dfrac{{19}}{{16}}\)
Đáp án : B
Sử dụng quy tắc chuyển vế, đổi dấu để tìm \(x\)
\(\dfrac{{15}}{{20}} - x = \dfrac{7}{{16}}\)
\(\begin{array}{l} - x = \dfrac{7}{{16}} - \dfrac{{15}}{{20}}\\ - x = - \dfrac{5}{{16}}\\x = \dfrac{5}{{16}}\end{array}\)
Tính \(\dfrac{4}{{15}} - \dfrac{2}{{65}} - \dfrac{4}{{39}}\) ta được
-
A.
$\dfrac{1}{{39}}$
-
B.
\(\dfrac{2}{{15}}\)
-
C.
\(\dfrac{{ - 2}}{{65}}\)
-
D.
\(\dfrac{1}{{15}}\)
Đáp án : B
Trong biểu thức chỉ chứa phép cộng và phép trừ nên ta tính lần lượt từ trái qua phải.
+) Quy đồng mẫu các phân số sau đó cộng tử với tử, mẫu giữ nguyên.
\(\begin{array}{l}\dfrac{4}{{15}} - \dfrac{2}{{65}} - \dfrac{4}{{39}}\\ = \dfrac{{52}}{{195}} - \dfrac{6}{{195}} - \dfrac{{20}}{{195}}\\ = \dfrac{{52 - 6 - 20}}{{195}}\\ = \dfrac{{26}}{{195}} = \dfrac{2}{{15}}\end{array}\)
Tính hợp lý \(B = \dfrac{{31}}{{23}} - \left( {\dfrac{7}{{30}} + \dfrac{8}{{23}}} \right)\) ta được
-
A.
$\dfrac{{23}}{{30}}$
-
B.
\(\dfrac{7}{{30}}\)
-
C.
\( - \dfrac{7}{{30}}\)
-
D.
\( - \dfrac{{23}}{{30}}\)
Đáp án : A
Phá dấu ngoặc rồi nhóm các số hạng thích hợp để được tổng hoặc hiệu là các số nguyên rồi tính giá tri biểu thức.
Chú ý quy tắc phá ngoặc đằng trước có dấu \('' - ''\) thì phải đổi dấu.
\(\begin{array}{l}B = \dfrac{{31}}{{23}} - \left( {\dfrac{7}{{30}} + \dfrac{8}{{23}}} \right)\\B = \dfrac{{31}}{{23}} - \dfrac{7}{{30}} - \dfrac{8}{{23}}\\B = \left( {\dfrac{{31}}{{23}} - \dfrac{8}{{23}}} \right) - \dfrac{7}{{30}}\\B = 1 - \dfrac{7}{{30}}\\B = \dfrac{{23}}{{30}}\end{array}\)
Cho \(M = \left( {\dfrac{1}{3} + \dfrac{{12}}{{67}} + \dfrac{{13}}{{41}}} \right) - \left( {\dfrac{{79}}{{67}} - \dfrac{{28}}{{41}}} \right)\) và \(N = \dfrac{{38}}{{45}} - \left( {\dfrac{8}{{45}} - \dfrac{{17}}{{51}} - \dfrac{3}{{11}}} \right)\) . Chọn câu đúng.
-
A.
$M = N$
-
B.
\(N < 1 < M\)
-
C.
\(1 < M < N\)
-
D.
\(M < 1 < N\)
Đáp án : D
Phá ngoặc rồi nhóm các số hạng có tổng hoặc hiệu là một số nguyên rồi thực hiện tính giá trị các biểu thức \(M,N\) và kết luận.
\(\begin{array}{l}M = \left( {\dfrac{1}{3} + \dfrac{{12}}{{67}} + \dfrac{{13}}{{41}}} \right) - \left( {\dfrac{{79}}{{67}} - \dfrac{{28}}{{41}}} \right)\\M = \dfrac{1}{3} + \dfrac{{12}}{{67}} + \dfrac{{13}}{{41}} - \dfrac{{79}}{{67}} + \dfrac{{28}}{{41}}\\M = \dfrac{1}{3} + \left( {\dfrac{{12}}{{67}} - \dfrac{{79}}{{67}}} \right) + \left( {\dfrac{{13}}{{41}} + \dfrac{{28}}{{41}}} \right)\\M = \dfrac{1}{3} + \left( { - 1} \right) + 1\\M = \dfrac{1}{3}\end{array}\)
\(\begin{array}{l}N = \dfrac{{38}}{{45}} - \left( {\dfrac{8}{{45}} - \dfrac{{17}}{{51}} - \dfrac{3}{{11}}} \right)\\N = \dfrac{{38}}{{45}} - \dfrac{8}{{45}} + \dfrac{{17}}{{51}} + \dfrac{3}{{11}}\\N = \left( {\dfrac{{38}}{{45}} - \dfrac{8}{{45}}} \right) + \dfrac{{17}}{{51}} + \dfrac{3}{{11}}\\N = \dfrac{2}{3} + \dfrac{1}{3} + \dfrac{3}{{11}}\\N = 1 + \dfrac{3}{{11}}\\N = \dfrac{{14}}{{11}}\end{array}\)
Vì \(\dfrac{1}{3} < 1 < \dfrac{{14}}{{11}}\) nên \(M < 1 < N\)
Tìm \(x\) sao cho \(x - \dfrac{{ - 7}}{{12}} = \dfrac{{17}}{{18}} - \dfrac{1}{9}\).
-
A.
$ - \dfrac{1}{4}$
-
B.
\(\dfrac{{17}}{{12}}\)
-
C.
\(\dfrac{1}{4}\)
-
D.
\( - \dfrac{{17}}{{12}}\)
Đáp án : C
Sử dụng quy tắc chuyển vế đổi dấu để tìm \(x\)
\(\begin{array}{l}x - \dfrac{{ - 7}}{{12}} = \dfrac{{17}}{{18}} - \dfrac{1}{9}\\x - \dfrac{{ - 7}}{{12}} = \dfrac{5}{6}\\x = \dfrac{5}{6} + \dfrac{{ - 7}}{{12}}\\x = \dfrac{1}{4}\end{array}\)
Giá trị nào của \(x\) dưới đây thỏa mãn \(\dfrac{{29}}{{30}} - \left( {\dfrac{{13}}{{23}} + x} \right) = \dfrac{7}{{69}}\) ?
-
A.
$\dfrac{3}{{10}}$
-
B.
\(\dfrac{{13}}{{23}}\)
-
C.
\(\dfrac{2}{5}\)
-
D.
\( - \dfrac{3}{{10}}\)
Đáp án : A
Tính \(\dfrac{{13}}{{23}} + x\) rồi tìm \(x\) theo quy tắc chuyển vế đổi dấu.
\(\begin{array}{l}\dfrac{{29}}{{30}} - \left( {\dfrac{{13}}{{23}} + x} \right) = \dfrac{7}{{69}}\\\dfrac{{13}}{{23}} + x = \dfrac{{29}}{{30}} - \dfrac{7}{{69}}\\\dfrac{{13}}{{23}} + x = \dfrac{{199}}{{230}}\\x = \dfrac{{199}}{{230}} - \dfrac{{13}}{{23}}\\x = \dfrac{3}{{10}}\end{array}\)
Có bao nhiêu số nguyên \(x\) thỏa mãn \(\dfrac{{ - 5}}{{14}} - \dfrac{{37}}{{14}} \le x \le \dfrac{{31}}{{73}} - \dfrac{{31313131}}{{73737373}}\) ?
-
A.
$3$
-
B.
\(5\)
-
C.
\(4\)
-
D.
\(1\)
Đáp án : C
Thực hiện phép tính hai vế (rút gọn nếu thể) và tìm \(x\)
\(\dfrac{{ - 5}}{{14}} - \dfrac{{37}}{{14}} \le x \le \dfrac{{31}}{{73}} - \dfrac{{313131}}{{737373}}\)
\(\dfrac{{ - 5}}{{14}} + \dfrac{{ - 37}}{{14}} \le x \le \dfrac{{31}}{{73}} - \dfrac{{313131:10101}}{{737373:10101}}\)
\(\dfrac{{ - 42}}{{14}} \le x \le \dfrac{{31}}{{73}} - \dfrac{{31}}{{73}}\)
\( - 3 \le x \le 0\)
\(x \in \left\{ { - 3; - 2; - 1;0} \right\}\)
Vậy có \(4\) giá trị của \(x\) thỏa mãn bài toán.
Hai vòi nước cùng chảy vào một bể cạn. Vòi thứ nhất chảy riêng trong \(10\) giờ đầy bể, vòi thứ hai chảy riêng trong \(8\) giờ đầy bể. Vòi thứ ba tháo nước ra sau \(5\) giờ thì bể cạn. Nếu bể đang cạn, ta mở cả ba vòi thì sau \(1\) giờ chảy được bao nhiêu phần bể?
-
A.
$\dfrac{{17}}{{40}}$
-
B.
\(\dfrac{1}{{40}}\)
-
C.
\(\dfrac{1}{{13}}\)
-
D.
\(1\)
Đáp án : B
- Tìm số phần bể mỗi vòi \(1,2\) chảy được trong \(1\) giờ và số phần bể vòi \(3\) tháo ra.
- Tính số phần bể chảy được trong \(1\) giờ khi mở cả \(3\) vòi.
Trong \(1\) giờ, vòi thứ nhất chảy được là: \(1:10 = \dfrac{1}{{10}}\) (bể)
Trong \(1\) giờ, vòi thứ hai chảy được là: \(1:8 = \dfrac{1}{8}\) (bể)
Trong \(1\) giờ, vòi thứ ba tháo được là: \(1:5 = \dfrac{1}{5}\) (bể)
Sau \(1\) giờ, lượng nước trong bể có là:
\(\dfrac{1}{{10}} + \dfrac{1}{8} - \dfrac{1}{5} = \dfrac{1}{{40}}\) (bể)
Cho \(x\) là số thỏa mãn \(x + \dfrac{4}{{5.9}} + \dfrac{4}{{9.13}} + \dfrac{4}{{13.17}} + ... + \dfrac{4}{{41.45}} = \dfrac{{ - 37}}{{45}}\) . Chọn kết luận đúng:
-
A.
$x$ nguyên âm
-
B.
\(x = 0\)
-
C.
\(x\) nguyên dương
-
D.
\(x\) là phân số dương
Đáp án : A
- Sử dụng công thức \(\dfrac{a}{{n\left( {n + a} \right)}} = \dfrac{1}{n} - \dfrac{1}{{n + a}}\) để rút gọn tổng ở vế trái
- Sử dụng quy tắc chuyển vế để tìm \(x\)
\(x + \dfrac{4}{{5.9}} + \dfrac{4}{{9.13}} + \dfrac{4}{{13.17}} + ... + \dfrac{4}{{41.45}} = \dfrac{{ - 37}}{{45}}\)
\(x + \dfrac{1}{5} - \dfrac{1}{9} + \dfrac{1}{9} - \dfrac{1}{{13}} + ... + \dfrac{1}{{41}} - \dfrac{1}{{45}} = - \dfrac{{37}}{{45}}\)
\(x + \dfrac{1}{5} - \dfrac{1}{{45}} = - \dfrac{{37}}{{45}}\)
\(x + \dfrac{8}{{45}} = - \dfrac{{37}}{{45}}\)
\(x = - \dfrac{{37}}{{45}} - \dfrac{8}{{45}}\)
\(x = - 1\)
Vì \( - 1\) là số nguyên âm nên đáp án A đúng.
Cho \(P = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + ... + \dfrac{1}{{{{2002}^2}}} + \dfrac{1}{{{{2003}^2}}}\) . Chọn câu đúng.
-
A.
$P > 1$
-
B.
\(P > 2\)
-
C.
\(P < 1\)
-
D.
\(P < 0\)
Đáp án : C
- Đánh giá từng số hạng của biểu thức: \(\dfrac{1}{{{n^2}}} < \dfrac{1}{{\left( {n - 1} \right).n}}\)
- Sử dụng công thức \(\dfrac{1}{{n\left( {n + 1} \right)}} = \dfrac{1}{n} - \dfrac{1}{{n + 1}}\)
\(P = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + ... + \dfrac{1}{{{{2002}^2}}} + \dfrac{1}{{{{2003}^2}}}\)
\( < \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + ... + \dfrac{1}{{2001.2002}} + \dfrac{1}{{2002.2003}}\)
\( = \dfrac{1}{1} - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + ... + \dfrac{1}{{2001}} - \dfrac{1}{{2002}} + \dfrac{1}{{2002}} - \dfrac{1}{{2003}}\)
\( = 1 - \dfrac{1}{{2003}} = \dfrac{{2002}}{{2003}} < 1\)
Vậy \(P < 1\)