Trắc nghiệm toán 6 các dạng toán bài 5 chương 1 chân trời sáng tạo có đáp án — Không quảng cáo

Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo có đáp án Bài tập trắc nghiệm Chương 1: Số tự nhiên


Trắc nghiệm Các dạng toán về thứ tự thực hiện các phép tính Toán 6 Chân trời sáng tạo

Đề bài

Câu 1 :

Giá trị nào dưới đây của \(x\) thỏa mãn \({2^4}.x - {3^2}.x = 145 - 255:51?\)

  • A.

    $20$

  • B.

    $30$

  • C.

    $40$

  • D.

    $80$

Câu 2 :

Câu nào dưới đây là đúng khi nói đến giá trị của \(A = 18.\left\{ {420:6 + \left[ {150 - \left( {68.2 - {2^3}.5} \right)} \right]} \right\}\) ?

  • A.

    Kết quả  có chữ số tận cùng là \(3\)

  • B.

    Kết quả là số lớn hơn \(2000.\)

  • C.

    Kết quả là số lớn hơn \(3000.\)

  • D.

    Kết quả là số lẻ.

Câu 3 :

Thực hiện phép tính \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\) một cách hợp lý ta được

  • A.

    $132$

  • B.

    $312$

  • C.

    $213$

  • D.

    $215$

Câu 4 :

Có bao nhiêu giá trị của \(x\) thỏa mãn \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132?\)

  • A.

    $3$

  • B.

    $2$

  • C.

    $1$

  • D.

    $4$

Câu 5 :

Giá trị của \(x\) thỏa mãn \(65 - {4^{x + 2}} = {2020^0}\) là

  • A.

    $2$

  • B.

    $4$

  • C.

    $3$

  • D.

    $1$

Câu 6 :

Cho \(A = 4.\left\{ {{3^2}.\left[ {\left( {{5^2} + {2^3}} \right):11} \right] - 26} \right\} + 2002\) và \(B = 134 - \left\{ {150:5 - \left[ {120:4 + 25 - \left( {12 + 18} \right)} \right]} \right\}\). Chọn câu đúng.

  • A.

    $A = B$

  • B.

    $A = B + 1$

  • C.

    $A < B$

  • D.

    $A > B$

Câu 7 :

Tính nhanh: \(\left( {2 + 4 + 6 + ... + 100} \right)\left( {36.333 - 108.111} \right)\) ta được kết quả là

  • A.

    $0$

  • B.

    $1002$

  • C.

    $20$

  • D.

    $2$

Câu 8 :

Trong một cuộc thi có \(20\) câu hỏi. Mỗi câu trả lời đúng được \(10\) điểm, mỗi câu trả lời sai bị trừ \(3\) điểm. Một học sinh đạt được \(148\) điểm. Hỏi bạn đã trả lời đúng bao nhiêu câu hỏi?

  • A.

    $16$

  • B.

    $15$

  • C.

    $4$

  • D.

    $10$

Câu 9 :

Gọi \({x_1}\) là giá trị thỏa mãn \({5^{x - 2}} - {3^2} = {2^4} - \left( {{2^8}{{.2}^4} - {2^{10}}{{.2}^2}} \right)\) và \({x_2}\) là giá trị thỏa mãn  \(697:\left[ {\left( {15.x + 364} \right):x} \right] = 17\) . Tính \({x_1}.{x_2}\).

  • A.

    $14$

  • B.

    $56$

  • C.

    $4$

  • D.

    $46$

Lời giải và đáp án

Câu 1 :

Giá trị nào dưới đây của \(x\) thỏa mãn \({2^4}.x - {3^2}.x = 145 - 255:51?\)

  • A.

    $20$

  • B.

    $30$

  • C.

    $40$

  • D.

    $80$

Đáp án : A

Phương pháp giải :

+ Tính giá trị vế phải và tính giá trị mỗi lũy thừa.

+ Sử dụng tính chất \(ab - ac = a\left( {b - c} \right)\) sau đó tính \(x\) bằng cách lấy tích chia cho thừa số đã biết.

Lời giải chi tiết :

Ta có \({2^4}.x - {3^2}.x = 145 - 255:51\)

\(16.x - 9.x = 145 - 5\)

\(x\left( {16 - 9} \right) = 140\)

\(x.7 = 140\)

\(x = 140:7\)

\(x = 20.\)

Câu 2 :

Câu nào dưới đây là đúng khi nói đến giá trị của \(A = 18.\left\{ {420:6 + \left[ {150 - \left( {68.2 - {2^3}.5} \right)} \right]} \right\}\) ?

  • A.

    Kết quả  có chữ số tận cùng là \(3\)

  • B.

    Kết quả là số lớn hơn \(2000.\)

  • C.

    Kết quả là số lớn hơn \(3000.\)

  • D.

    Kết quả là số lẻ.

Đáp án : B

Phương pháp giải :

Thực hiện các phép tính theo thứ tự \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

Lời giải chi tiết :

Ta có \(A = 18.\left\{ {420:6 + \left[ {150 - \left( {68.2 - {2^3}.5} \right)} \right]} \right\}\)

\( = 18.\left\{ {420:6 + \left[ {150 - \left( {68.2 - 8.5} \right)} \right]} \right\}\)

\( = 18.\left\{ {420:6 + \left[ {150 - \left( {136 - 40} \right)} \right]} \right\}\)

\( = 18.\left[ {420:6 + \left( {150 - 96} \right)} \right]\)

\( = 18.\left( {70 + 54} \right)\)

\( = 18.124\)

\( = 2232.\)

Vậy \(A = 2232.\)

Câu 3 :

Thực hiện phép tính \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\) một cách hợp lý ta được

  • A.

    $132$

  • B.

    $312$

  • C.

    $213$

  • D.

    $215$

Đáp án : C

Phương pháp giải :

Dùng tính chất  \(\left( {a + b + c} \right):m = a:m + b:m + c:m\)

Và các công thức lũy thừa \({\left( {a.b} \right)^n} = {a^n}.{b^n};\,{\left( {{a^n}} \right)^m} = {a^{n.m}};\,{a^m}:{a^n} = {a^{m - n}}\) để tính toán.

Lời giải chi tiết :

Ta có \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\)

\( = {10^3}:{5^3} + {10^4}:{5^3} + {125^2}:{5^3}\)

\( = {\left( {2.5} \right)^3}:{5^3} + {\left( {2.5} \right)^4}:{5^3} + {\left( {{5^3}} \right)^2}:{5^3}\)

\( = {2^3}{.5^3}:{5^3} + {2^4}{.5^4}:{5^3} + {5^6}:{5^3}\)

\( = {2^3} + {2^4}.5 + {5^3}\)

\( = 8 + 16.5 + 125\)

$ = 8 + 80 + 125 = 213.$

Câu 4 :

Có bao nhiêu giá trị của \(x\) thỏa mãn \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132?\)

  • A.

    $3$

  • B.

    $2$

  • C.

    $1$

  • D.

    $4$

Đáp án : C

Phương pháp giải :

+ Tìm số trừ bằng cách lấy số bị trừ trừ đi hiệu.

+ Tìm số hạng bằng tổng trừ đi số hạng đã biết.

Lời giải chi tiết :

Ta có \(240 - \left[ {23 + \left( {13 + 24.3 - x} \right)} \right] = 132\)

\(23 + \left( {13 + 72 - x} \right) = 240 - 132\)

\(23 + \left( {85 - x} \right) = 108\)

\(85 - x = 108 - 23\)

\(85 - x = 85\)

\(x = 85 - 85\)

\(x = 0.\)

Vậy có một giá trị \(x = 0\) thỏa mãn đề bài.

Câu 5 :

Giá trị của \(x\) thỏa mãn \(65 - {4^{x + 2}} = {2020^0}\) là

  • A.

    $2$

  • B.

    $4$

  • C.

    $3$

  • D.

    $1$

Đáp án : D

Phương pháp giải :

+ Tìm số trừ bằng cách lấy số bị trừ trừ đi hiệu.

+ Biến đổi vế phải thành lũy thừa cơ số \(4\) rồi cho số mũ bằng nhau để tìm \(x.\)

Lời giải chi tiết :

Ta có \(65 - {4^{x + 2}} = {2020^0}\)

$65 - {4^{x + 2}} = 1$

\({4^{x + 2}} = 65 - 1\)

\({4^{x + 2}} = 64\)

\({4^{x + 2}} = {4^3}\)

\(x + 2 = 3\)

\(x = 3 - 2\)

\(x = 1.\)

Vậy \(x = 1.\)

Câu 6 :

Cho \(A = 4.\left\{ {{3^2}.\left[ {\left( {{5^2} + {2^3}} \right):11} \right] - 26} \right\} + 2002\) và \(B = 134 - \left\{ {150:5 - \left[ {120:4 + 25 - \left( {12 + 18} \right)} \right]} \right\}\). Chọn câu đúng.

  • A.

    $A = B$

  • B.

    $A = B + 1$

  • C.

    $A < B$

  • D.

    $A > B$

Đáp án : D

Phương pháp giải :

+ Thực hiện theo thứ tự ngoặc tròn rồi ngoặc vuông rồi ngoặc nhọn.

+ Trong ngoặc ta thực hiện phép nâng lũy thừa rồi nhân chia, công trừ để tính \(A\) và \(B.\)

Lời giải chi tiết :

\(A = 4.\left\{ {{3^2}.\left[ {\left( {{5^2} + {2^3}} \right):11} \right] - 26} \right\} + 2002\)

\( = 4.\left\{ {{3^2}.\left[ {\left( {25 + 8} \right):11} \right] - 26} \right\} + 2002\)

\( = 4.\left[ {{3^2}.\left( {33:11} \right) - 26} \right] + 2002\)

\( = 4.\left( {{3^2}.3 - 26} \right) + 2002\)

\( = 4.\left( {27 - 26} \right) + 2002\)

\( = 4.1 + 2002\)

\( = 4 + 2002\)

\( = 2006.\)

Và \(B = 134 - \left\{ {150:5 - \left[ {120:4 + 25 - \left( {12 + 18} \right)} \right]} \right\}\)

\( = 134 - \left[ {150:5 - \left( {120:4 + 25 - 30} \right)} \right]\)

\( = 134 - \left[ {150:5 - \left( {30 + 25 - 30} \right)} \right]\)

\( = 134 - \left( {150:5 - 25} \right)\)

\( = 134 - \left( {30 - 25} \right)\)

\( = 134 - 5\)

\( = 129\)

Vậy \(A = 2006\) và \(B = 129\) nên \(A > B.\)

Câu 7 :

Tính nhanh: \(\left( {2 + 4 + 6 + ... + 100} \right)\left( {36.333 - 108.111} \right)\) ta được kết quả là

  • A.

    $0$

  • B.

    $1002$

  • C.

    $20$

  • D.

    $2$

Đáp án : A

Phương pháp giải :

Thực hiện tính trong ngoặc trước sau đó đến nhân chia, cộng trừ.

Lời giải chi tiết :

\(\begin{array}{l}\left( {2 + 4 + 6 + ... + 100} \right)\left( {36.333 - 108.111} \right)\\ = \left( {2 + 4 + 6 + ... + 100} \right)\left( {36.3.111 - 36.3.111} \right)\\ = \left( {2 + 4 + 6 + ... + 100} \right).0\\ = 0\end{array}\)

Câu 8 :

Trong một cuộc thi có \(20\) câu hỏi. Mỗi câu trả lời đúng được \(10\) điểm, mỗi câu trả lời sai bị trừ \(3\) điểm. Một học sinh đạt được \(148\) điểm. Hỏi bạn đã trả lời đúng bao nhiêu câu hỏi?

  • A.

    $16$

  • B.

    $15$

  • C.

    $4$

  • D.

    $10$

Đáp án : A

Phương pháp giải :

Tính tổng số điểm đạt được nếu trả lời đúng hết.

Tính số điểm dư ra so với số điểm đạt được.

Từ đó suy ra số câu trả lời đúng và số câu trả lời sai.

Lời giải chi tiết :

Giả sử bạn học sinh đó trả lời đúng cả \(20\) câu thì tổng số điểm đạt được là \(10.20 = 200\) (điểm)

Số điểm dư ra là \(200 - 148 = 52\) (điểm)

Thay mỗi câu trả lời sai thành câu trả lời đúng thì dư ra \(10 + 3 = 13\) (điểm)

Số câu trả lời sai là \(52:13 = 4\) (câu)

Số câu trả lời đúng \(20 - 4 = 16\) (câu)

Câu 9 :

Gọi \({x_1}\) là giá trị thỏa mãn \({5^{x - 2}} - {3^2} = {2^4} - \left( {{2^8}{{.2}^4} - {2^{10}}{{.2}^2}} \right)\) và \({x_2}\) là giá trị thỏa mãn  \(697:\left[ {\left( {15.x + 364} \right):x} \right] = 17\) . Tính \({x_1}.{x_2}\).

  • A.

    $14$

  • B.

    $56$

  • C.

    $4$

  • D.

    $46$

Đáp án : B

Phương pháp giải :

Tìm các giá trị \({x_1}\) và \({x_2}\) từ đó tính tích \({x_1}.{x_2}\)

Lời giải chi tiết :

\(\begin{array}{l}{\rm{ + )}}\,\,\,{5^{x - 2}} - {3^2} = {2^4} - \left( {{2^{8 + 4}} - {2^{10 + 2}}} \right)\\{5^{x - 2}} - {3^2} = {2^4} - \left( {{2^{12}} - {2^{12}}} \right)\\{5^{x - 2}} - {3^2} = {2^4} - 0 = {2^4}\\{5^{x - 2}} - 9 = 16\\{5^{x - 2}} = 16 + 9\\{5^{x - 2}} = 25\\{5^{x - 2}} = {5^2}\\x - 2\,\, = 2\\x\,\, = 2 + 2\\x = 4.\end{array}\)

\(\begin{array}{l}{\rm{ + )}}\,697:\left[ {\left( {15.x + 364} \right):x} \right] = 17\\\left( {15x + 364} \right):x = 697:17\\\left( {15x + 364} \right):x = 41\\15 + 364:x = 41\\364:x = 41 - 15\\364:x = 26\\x = 364:26\\x = 14\end{array}\)

Vậy \({x_1} = 4;\,{x_2} = 14\) nên \({x_1}.{x_2} = 4.14 = 56.\)


Cùng chủ đề:

Trắc nghiệm toán 6 các dạng toán bài 3 chương 2 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 4 (tiếp) chương 2 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 4 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 4 chương 2 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 4 chương 5 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 5 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 5 chương 5 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 6 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 7 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 8 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 9 chương 1 chân trời sáng tạo có đáp án