Trắc nghiệm Các dạng toán về phép tính lũy thừa Toán 6 Cánh diều
Đề bài
Chọn câu đúng.
-
A.
\({5^2}{.5^3}{.5^4} = {5^{10}}\)
-
B.
\({5^2}{.5^3}:{5^4} = 5\)
-
C.
\({5^3}:5 = 5\)
-
D.
\({5^1} = 1\)
Chọn câu sai.
-
A.
\({5^3} < {3^5}\)
-
B.
\({3^4} > {2^5}\)
-
C.
\({4^3} = {2^6}\)
-
D.
\({4^3} > {8^2}\)
Tìm số tự nhiên \(n\) biết \({3^n} = 81.\)
-
A.
\(n = 2\)
-
B.
\(n = 4\)
-
C.
\(n = 5\)
-
D.
\(n = 8\)
Số tự nhiên \(x\) nào dưới đây thỏa mãn \({4^x} = {4^3}{.4^5}?\)
-
A.
\(x = 32\)
-
B.
\(x = 16\)
-
C.
\(x = 4\)
-
D.
\(x = 8\)
Số tự nhiên \(m\) nào dưới đây thỏa mãn \({20^{2018}} < {20^m} < {20^{2020}}?\)
-
A.
\(m = 2020\)
-
B.
\(m = 2018\)
-
C.
\(m = 2019\)
-
D.
\(m = 20\)
Có bao nhiêu số tự nhiên \(n\) thỏa mãn \({5^n} < 90?\)
-
A.
\(2\)
-
B.
\(3\)
-
C.
\(4\)
-
D.
\(1\)
Số tự nhiên \(x\) thỏa mãn \({\left( {2x + 1} \right)^3} = 125\) là
-
A.
\(x = 2\)
-
B.
\(x = 3\)
-
C.
\(x = 5\)
-
D.
\(x = 4\)
Gọi \(x\) là số tự nhiên thỏa mãn \({2^x} - 15 = 17\). Chọn câu đúng.
-
A.
\(x < 6\)
-
B.
\(x > 7\)
-
C.
\(x < 5\)
-
D.
\(x < 4\)
Có bao nhiêu số tự nhiên \(x\) thỏa mãn \({\left( {7x - 11} \right)^3} = {2^5}{.5^2} + 200?\)
-
A.
\(1\)
-
B.
\(2\)
-
C.
\(0\)
-
D.
\(3\)
Tổng các số tự nhiên thỏa mãn \({\left( {x - 4} \right)^5} = {\left( {x - 4} \right)^3}\) là
-
A.
\(8\)
-
B.
\(4\)
-
C.
\(5\)
-
D.
\(9\)
So sánh \({16^{19}}\) và \({8^{25}}\) .
-
A.
\({16^{19}} < {8^{25}}.\)
-
B.
\({16^{19}} > {8^{25}}.\)
-
C.
\({16^{19}} = {8^{25}}.\)
-
D.
Không đủ điều kiện so sánh.
Tính giá trị của biểu thức \(A = \dfrac{{{{11.3}^{22}}{{.3}^7} - {9^{15}}}}{{{{\left( {{{2.3}^{13}}} \right)}^2}}}\)
-
A.
\(A = 18\)
-
B.
\(A = 9\)
-
C.
\(A = 54.\)
-
D.
\(A = 6\)
Truyền thuyết Ấn Độ kể rằng, người phát minh ra bàn cờ vua chọn phần thưởng là số thóc rải trên 64 ô của bàn cờ vua như sau: ô thứ nhất để 1 hạt thóc, ô thứ hai để 2 hạt thóc, ô thứ ba để 4 hạt thóc, ô thứ tư để 8 hạt thóc,… cứ như thế, số hạt ở ô sau gấp đôi số hạt ở ô trước. Em hãy tìm số hạt thóc ở ô thứ 8?
-
A.
\({2^9}\)
-
B.
\({2^7}\)
-
C.
\({2^6}\)
-
D.
\({2^8}\)
Cho \(A = 3 + {3^2} + {3^3} + ... + {3^{100}}\) . Tìm số tự nhiên \(n\) biết rằng \(2A + 3 = {3^n}.\)
-
A.
\(n = 99\)
-
B.
\(n = 100\)
-
C.
\(n = 101\)
-
D.
\(n = 102\)
Lời giải và đáp án
Chọn câu đúng.
-
A.
\({5^2}{.5^3}{.5^4} = {5^{10}}\)
-
B.
\({5^2}{.5^3}:{5^4} = 5\)
-
C.
\({5^3}:5 = 5\)
-
D.
\({5^1} = 1\)
Đáp án : B
Sử dụng các công thức ${a^m}.{a^n} = {a^{m + n}}$; ${a^m}:{a^n} = {a^{m - n}}$ \(\left( {a \ne 0;\,m \ge n \ge 0} \right)\)
+) Ta có \({5^2}{.5^3}{.5^4} = {5^{2 + 3 + 4}} = {5^9}\) nên A sai.
+) \({5^2}{.5^3}:{5^4} = {5^{2 + 3 - 4}} = {5^1} = 5\) nên B đúng
+) \({5^3}:5 = {5^{3 - 1}} = {5^2};\,{5^1} = 5\) nên C;D sai.
Chọn câu sai.
-
A.
\({5^3} < {3^5}\)
-
B.
\({3^4} > {2^5}\)
-
C.
\({4^3} = {2^6}\)
-
D.
\({4^3} > {8^2}\)
Đáp án : D
So sánh các lũy thừa bằng cách tính giá trị rồi so sánh.
Cách giải:
+) Ta có \({5^3} = 5.5.5 = 125\); \({3^5} = 3.3.3.3.3 = 243\) nên \({5^3} < {3^5}\) ( A đúng)
+) \({3^4} = 3.3.3.3 = 81\) và \({2^5} = 2.2.2.2.2 = 32\) nên \({3^4} > {2^5}\) ( B đúng)
+) \({4^3} = 4.4.4 = 64\) và \({2^6} = 2.2.2.2.2.2 = 64\) nên \({4^3} = {2^6}\) ( C đúng)
+) \({4^3} = 64;{8^2} = 64\) nên \({4^3} = {8^2}\) ( D sai)
Tìm số tự nhiên \(n\) biết \({3^n} = 81.\)
-
A.
\(n = 2\)
-
B.
\(n = 4\)
-
C.
\(n = 5\)
-
D.
\(n = 8\)
Đáp án : B
Đưa hai vế về hai lũy thừa cùng số mũ rồi sử dụng \({a^n} = {a^m}\left( {a \ne 0;a \ne 1} \right)\) thì \(n = m.\)
Ta có \({3^n} = 81\) mà \(81 = {3^4}\) nên \({3^n} = {3^4}\) suy ra \(n = 4.\)
Số tự nhiên \(x\) nào dưới đây thỏa mãn \({4^x} = {4^3}{.4^5}?\)
-
A.
\(x = 32\)
-
B.
\(x = 16\)
-
C.
\(x = 4\)
-
D.
\(x = 8\)
Đáp án : D
+ Sử dụng công thức ${a^m}.{a^n} = {a^{m + n}}$ để tính vế trái.
+ Sử dụng \({a^n} = {a^m}\left( {a \ne 0;a \ne 1} \right)\) thì \(n = m.\)
Ta có \({4^x} = {4^3}{.4^5}\)
\({4^x} = {4^{3 + 5}}\)
\({4^x} = {4^8}\)
\(x = 8\)
Vậy \(x = 8.\)
Số tự nhiên \(m\) nào dưới đây thỏa mãn \({20^{2018}} < {20^m} < {20^{2020}}?\)
-
A.
\(m = 2020\)
-
B.
\(m = 2018\)
-
C.
\(m = 2019\)
-
D.
\(m = 20\)
Đáp án : C
+ So sánh các lũy thừa cùng cơ số : Nếu \({a^m} > {a^n}\) thì \(m > n.\)
+ Từ đó chọn ra các giá trị thích hợp của \(m.\)
Ta có \({20^{2018}} < {20^m} < {20^{2020}}\) suy ra \(2018 < m < 2020\) nên \(m = 2019.\)
Có bao nhiêu số tự nhiên \(n\) thỏa mãn \({5^n} < 90?\)
-
A.
\(2\)
-
B.
\(3\)
-
C.
\(4\)
-
D.
\(1\)
Đáp án : B
+ So sánh các lũy thừa cùng cơ số : Nếu \({a^m} > {a^n}\) thì \(m > n.\)
+ Từ đó chọn ra các giá trị thích hợp của \(n.\)
Vì \({5^2} < 90 < {5^3}\) nên từ \({5^n} < 90\) suy ra \({5^n} \le 5^2\)
hay \(n \le 2.\)
Tức là \(n = 0;1;2.\)
Vậy có ba giá trị thỏa mãn.
Số tự nhiên \(x\) thỏa mãn \({\left( {2x + 1} \right)^3} = 125\) là
-
A.
\(x = 2\)
-
B.
\(x = 3\)
-
C.
\(x = 5\)
-
D.
\(x = 4\)
Đáp án : A
Đưa về hai lũy thừa cùng số mũ rồi cho hai cơ số bằng nhau.
Ta có \({\left( {2x + 1} \right)^3} = 125\)
\({\left( {2x + 1} \right)^3} = {5^3}\)
\(2x + 1 = 5\)
\(2x = 5 - 1\)
\(2x = 4\)
\(x = 4:2\)
\(x = 2.\)
Gọi \(x\) là số tự nhiên thỏa mãn \({2^x} - 15 = 17\). Chọn câu đúng.
-
A.
\(x < 6\)
-
B.
\(x > 7\)
-
C.
\(x < 5\)
-
D.
\(x < 4\)
Đáp án : A
+ Tìm số bị trừ \({2^x}\) bằng cách lấy hiệu cộng với số trừ.
+ Đưa về hai lũy thừa cùng cơ số và cho hai số mũ bằng nhau.
Ta có \({2^x} - 15 = 17\)
\({2^x} = 17 + 15\)
\({2^x} = 32\)
\({2^x} = {2^5}\)
\(x = 5.\)
Vậy \(x = 5 < 6.\)
Có bao nhiêu số tự nhiên \(x\) thỏa mãn \({\left( {7x - 11} \right)^3} = {2^5}{.5^2} + 200?\)
-
A.
\(1\)
-
B.
\(2\)
-
C.
\(0\)
-
D.
\(3\)
Đáp án : A
+ Tính vế phải
+ Đưa về hai lũy thừa cùng số mũ rồi cho hai cơ số bằng nhau
Ta có
\({\left( {7x - 11} \right)^3} = {2^5}{.5^2} + 200\)
\({\left( {7x - 11} \right)^3} = 32.25 + 200\)
\({\left( {7x - 11} \right)^3} = 1000\)
\({\left( {7x - 11} \right)^3} = {10^3}\)
\(7x - 11 = 10\)
\(7x = 11 + 10\)
\(7x = 21\)
\(x = 21:7\)
\(x = 3.\)
Vậy có \(1\) số tự nhiên \(x\) thỏa mãn đề bài là \(x = 3.\)
Tổng các số tự nhiên thỏa mãn \({\left( {x - 4} \right)^5} = {\left( {x - 4} \right)^3}\) là
-
A.
\(8\)
-
B.
\(4\)
-
C.
\(5\)
-
D.
\(9\)
Đáp án : D
Vì \({0^m} = {0^n};\,{1^m} = {1^n}\) với mọi \(m,n \ne 0\) nên
Xét các trường hợp:
+) \(x - 4 = 0\)
+) \(x - 4 = 1\)
Trường hợp 1: \(x - 4 = 0\) suy ra \(x = 4\) suy ra \(x = 4.\)
Trường hợp 2: \(x - 4 = 1\) suy ra \(x = 1 + 4\) hay \(x = 5.\)
Vậy tổng các số tự nhiên thỏa mãn là \(4 + 5 = 9.\)
So sánh \({16^{19}}\) và \({8^{25}}\) .
-
A.
\({16^{19}} < {8^{25}}.\)
-
B.
\({16^{19}} > {8^{25}}.\)
-
C.
\({16^{19}} = {8^{25}}.\)
-
D.
Không đủ điều kiện so sánh.
Đáp án : B
+ Đưa \({16^{19}}\) và \({8^{25}}\) về lũy thừa cơ số \(2\) (sử dụng công thức \({\left( {{a^m}} \right)^n} = {a^{m.n}}\) )
+ So sánh hai số mũ với nhau từ đó so sánh hai lũy thừa đã cho.
Ta có \({16^{19}}\)\( = {\left( {{2^4}} \right)^{19}} = {2^{4.19}} = {2^{76}}\)
Và \({8^{25}} = {\left( {{2^3}} \right)^{25}} = {2^{75}}\)
Mà \(76 > 75\) nên \({2^{76}} > {2^{75}}\) hay \({16^{19}} > {8^{25}}.\)
Tính giá trị của biểu thức \(A = \dfrac{{{{11.3}^{22}}{{.3}^7} - {9^{15}}}}{{{{\left( {{{2.3}^{13}}} \right)}^2}}}\)
-
A.
\(A = 18\)
-
B.
\(A = 9\)
-
C.
\(A = 54.\)
-
D.
\(A = 6\)
Đáp án : C
Sử dụng các công thức ${a^m}.{a^n} = {a^{m + n}};{a^m}:{a^n} = {a^{m - n}};\,$${\left( {{a^m}} \right)^n} = {a^{m.n}};\,{\left( {ab} \right)^m} = {a^m}.{b^m}\left( {a;b \ne 0,m \ge n} \right).$
Và tính chất \(ab - ac = a\left( {b - c} \right).\)
Ta có \(A = \dfrac{{{{11.3}^{22}}{{.3}^7} - {9^{15}}}}{{{{\left( {{{2.3}^{13}}} \right)}^2}}}\)\( = \dfrac{{{{11.3}^{22 + 7}} - {{\left( {{3^2}} \right)}^{15}}}}{{{2^2}.{{\left( {{3^{13}}} \right)}^2}}}\)\( = \dfrac{{{{11.3}^{29}} - {3^{2.15}}}}{{{2^2}{{.3}^{13.2}}}}\)\( = \dfrac{{{{11.3}^{29}} - {3^{30}}}}{{{2^2}{{.3}^{26}}}}\)\( = \dfrac{{{{11.3}^{29}} - {3^{29}}.3}}{{{2^2}{{.3}^{26}}}}\)
\( = \dfrac{{{3^{29}}\left( {11 - 3} \right)}}{{{2^2}{{.3}^{26}}}} = \dfrac{{{3^{29}}.8}}{{{{4.3}^{26}}}} = {2.3^{29 - 26}} = {2.3^3} = 54.\)
Vậy \(A = 54.\)
Truyền thuyết Ấn Độ kể rằng, người phát minh ra bàn cờ vua chọn phần thưởng là số thóc rải trên 64 ô của bàn cờ vua như sau: ô thứ nhất để 1 hạt thóc, ô thứ hai để 2 hạt thóc, ô thứ ba để 4 hạt thóc, ô thứ tư để 8 hạt thóc,… cứ như thế, số hạt ở ô sau gấp đôi số hạt ở ô trước. Em hãy tìm số hạt thóc ở ô thứ 8?
-
A.
\({2^9}\)
-
B.
\({2^7}\)
-
C.
\({2^6}\)
-
D.
\({2^8}\)
Đáp án : B
Biểu diễn số hạt thóc ở mỗi ô theo lũy thừa của 2.
Vậy số hạt thóc ở ô thứ 8 là \({2^7}\) .
Cho \(A = 3 + {3^2} + {3^3} + ... + {3^{100}}\) . Tìm số tự nhiên \(n\) biết rằng \(2A + 3 = {3^n}.\)
-
A.
\(n = 99\)
-
B.
\(n = 100\)
-
C.
\(n = 101\)
-
D.
\(n = 102\)
Đáp án : C
+ Tính \(3A\) sau đó tính \(2A = 3A - A\)
+ Sử dụng điều kiện ở đề bài để đưa về dạng hai lũy thừa cùng cơ số. Cho hai số mũ bằng nhau ta tìm được \(n.\)
Ta có \(A = 3 + {3^2} + {3^3} + ... + {3^{100}}\,\,\left( 1 \right)\) nên \(3A = {3^2} + {3^3} + {3^4} + ... + {3^{100}} + {3^{101}}\,\,\left( 2 \right)\)
Lấy \(\left( 2 \right)\) trừ \(\left( 1 \right)\) ta được \(2A = {3^{101}} - 3\) do đó \(2A + 3 = {3^{101}}\) mà theo đề bài \(2A + 3 = {3^n}\)
Suy ra \({3^n} = {3^{101}}\) nên \(n = 101.\)