Trắc nghiệm Bài 5: Tỉ lệ thức Toán 7 Cánh diều
Đề bài
Chỉ ra đáp án sai: Từ tỉ lệ thức \(\dfrac{5}{9} = \dfrac{{35}}{{63}}\) ta có tỉ lệ thức sau:
-
A.
\(\dfrac{5}{{35}} = \dfrac{9}{{63}}\)
-
B.
\(\dfrac{{63}}{9} = \dfrac{{35}}{5}\)
-
C.
\(\dfrac{{35}}{9} = \dfrac{{63}}{5}\)
-
D.
\(\dfrac{{63}}{{35}} = \dfrac{9}{5}\)
Các tỉ số nào sau đây lập thành một tỉ lệ thức?
-
A.
\(\dfrac{7}{{12}}\) và \(\dfrac{5}{6}:\dfrac{4}{3}\)
-
B.
\(\dfrac{6}{7}:\dfrac{{14}}{5}\) và \(\dfrac{7}{3}:\dfrac{2}{9}\)
-
C.
\(\dfrac{{15}}{{21}}\) và \( - \dfrac{{125}}{{175}}\)
-
D.
\(\dfrac{{ - 1}}{3}\) và \(\dfrac{{ - 19}}{{57}}\)
Cho bốn số \(2;{\rm{ }}5;{\rm{ }}a;{\rm{ }}b\) với \(a, b \ne 0\) và \(2a = 5b\), một tỉ lệ thức đúng được thiết lập từ bốn số trên là:
-
A.
\(\dfrac{2}{a} = \dfrac{5}{b}\)
-
B.
\(\dfrac{b}{5} = \dfrac{2}{a}\)
-
C.
\(\dfrac{2}{5} = \dfrac{a}{b}\)
-
D.
\(\dfrac{2}{b} = \dfrac{5}{a}\)
Tìm \(x\) biết \(\dfrac{{ - 1}}{2}:(2x - 1) = 0,2:\dfrac{{ - 3}}{5}\)
-
A.
\(x = \dfrac{1}{5}\)
-
B.
\(x = - \dfrac{5}{4}\)
-
C.
\(x = \dfrac{5}{4}\)
-
D.
\(x = \dfrac{4}{5}\)
Có bao nhiêu giá trị \(x\) thỏa mãn \(\dfrac{{16}}{x} = \dfrac{x}{{25}}\)
-
A.
\(1\)
-
B.
\(2\)
-
C.
\(0\)
-
D.
\(3\)
Cho tỉ lệ thức \(\dfrac{x}{{15}} = \dfrac{{ - 4}}{5}\) thì:
-
A.
\(x = \)\(\dfrac{{ - 4}}{3}\)
-
B.
\(x = 4\)
-
C.
\(x = - 12\)
-
D.
\(x = - 10\)
Biết cứ xay 100kg thóc thì được 60kg gạo. Hỏi muốn có 3 tạ gạo thì phải xay bao nhiêu tạ thóc?
-
A.
180 kg
-
B.
5 tạ
-
C.
2 tạ
-
D.
600 kg
Giá trị nào của \(x\) thỏa mãn \(\dfrac{{ - 3}}{{x - 2}} = \dfrac{7}{{6 - 3x}}\)
-
A.
x = 0
-
B.
x = -1
-
C.
\(x = 2\)
-
D.
Không có giá trị nào của x thỏa mãn
Tìm số hữu tỉ x biết rằng \(\dfrac{x}{{{y^2}}} = 2\) và \(\dfrac{x}{y} = 16\) \(\left( {y \ne 0} \right).\)
-
A.
\(x = 16\)
-
B.
\(x = 128\)
-
C.
\(x = 8\)
-
D.
\(x = 256\)
Chọn câu đúng. Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì
-
A.
\(a = c\)
-
B.
\(a.c = b.d\)
-
C.
\(a.d = b.c\)
-
D.
\(b = d\)
Chỉ ra đáp án sai: Từ tỉ lệ thức $\dfrac{5}{9} = \dfrac{{35}}{{63}}$ ta có tỉ lệ thức sau :
-
A.
$\dfrac{5}{{35}} = \dfrac{9}{{63}}$
-
B.
$\dfrac{{63}}{9} = \dfrac{{35}}{5}$
-
C.
$\dfrac{{35}}{9} = \dfrac{{63}}{5}$
-
D.
$\dfrac{{63}}{{35}} = \dfrac{9}{5}$
Các tỉ số nào sau đây lập thành một tỉ lệ thức?
-
A.
$\dfrac{7}{{12}}$ và $\dfrac{5}{6}:\dfrac{4}{3}$
-
B.
$\dfrac{6}{7}:\dfrac{{14}}{5}$ và $\dfrac{7}{3}:\dfrac{2}{9}$
-
C.
$\dfrac{{15}}{{21}}$ và $-\dfrac{{125}}{{175}}$
-
D.
$\dfrac{{ - 1}}{3}$ và $\dfrac{{ - 19}}{{57}}$
Các tỉ lệ thức có thể được từ đẳng thức \(5.\left( { - 27} \right) = \left( { - 9} \right).15\) là
-
A.
$\dfrac{5}{{15}} = \dfrac{{ - 9}}{{ - 27}};\,\dfrac{{15}}{5} = \dfrac{{ - 27}}{{ - 9}};\,\dfrac{5}{{ - 9}} = \dfrac{{15}}{{ - 27}};\,\dfrac{{ - 9}}{5} = \dfrac{{ - 27}}{{15}}$
-
B.
$\dfrac{5}{{15}} = \dfrac{{ - 9}}{{ - 27}};\,\dfrac{{15}}{5} = \dfrac{{ - 27}}{{ - 9}};\,\dfrac{5}{{ - 9}} = \dfrac{{15}}{{ - 27}};\,\dfrac{{ - 9}}{5} = \dfrac{{ - 15}}{{27}}$
-
C.
$\dfrac{5}{{15}} = \dfrac{{ - 9}}{{ - 27}};\,\dfrac{{15}}{5} = \dfrac{{ - 27}}{9}$
-
D.
$\dfrac{{15}}{5} = \dfrac{9}{{27}};\,\dfrac{{15}}{5} = \dfrac{{ - 27}}{{ - 9}};\,\dfrac{5}{{ - 9}} = \dfrac{{15}}{{ - 27}};\,\dfrac{{ - 9}}{5} = \dfrac{{ - 15}}{{27}}$
Cho bốn số $2;{\rm{ }}5;{\rm{ }}a;{\rm{ }}b$ với \(a, b \ne 0\) và $2a = 5b$, một tỉ lệ thức đúng được thiết lập từ bốn số trên là:
-
A.
\(\dfrac{2}{a} = \dfrac{5}{b}\)
-
B.
\(\dfrac{b}{5} = \dfrac{2}{a}\)
-
C.
\(\dfrac{2}{5} = \dfrac{a}{b}\)
-
D.
\(\dfrac{2}{b} = \dfrac{5}{a}\)
Tìm \(x\) biết \(\dfrac{{ - 1}}{2}:(2x - 1) = 0,2:\dfrac{{ - 3}}{5}\)
-
A.
\(x = \dfrac{1}{5}\)
-
B.
\(x = - \dfrac{5}{4}\)
-
C.
\(x = \dfrac{5}{4}\)
-
D.
\(x = \dfrac{4}{5}\)
Có bao nhiêu giá trị \(x\) thỏa mãn \(\dfrac{{16}}{x} = \dfrac{x}{{25}}\)
-
A.
\(1\)
-
B.
\(2\)
-
C.
\(0\)
-
D.
\(3\)
Giá trị nào dưới đây của \(x\) thỏa mãn \(2,5:7,5 = x:\dfrac{3}{5}\)
-
A.
\(x = \dfrac{1}{5}\)
-
B.
\(x = 5\)
-
C.
\(x = \dfrac{1}{3}\)
-
D.
\(x = 3\)
Cho tỉ lệ thức $\dfrac{x}{{15}} = \dfrac{{ - 4}}{5}$ thì:
-
A.
$x = $$\dfrac{{ - 4}}{3}$
-
B.
$x = 4$
-
C.
$x = - 12$
-
D.
$x = - 10$
Biết rằng \(\dfrac{{2x - y}}{{x + y}} = \dfrac{2}{3}.\) Khi đó tỉ số \(\dfrac{x}{y}\) bằng
-
A.
\(\dfrac{x}{y} = \dfrac{3}{2}\)
-
B.
\(\dfrac{x}{y} = \dfrac{2}{3}\)
-
C.
\(\dfrac{x}{y} = \dfrac{4}{5}\)
-
D.
\(\dfrac{x}{y} = \dfrac{5}{4}\)
Biết \(\dfrac{t}{x} = \dfrac{4}{3};\)\(\dfrac{y}{z} = \dfrac{3}{2};\)\(\dfrac{z}{x} = \dfrac{1}{6},\) hãy tìm tỉ số \(\dfrac{t}{y}.\)
-
A.
\(\dfrac{t}{y} = \dfrac{3}{{16}}\)
-
B.
\(\dfrac{t}{y} = \dfrac{4}{3}\)
-
C.
\(\dfrac{t}{y} = \dfrac{{16}}{3}\)
-
D.
\(\dfrac{t}{y} = \dfrac{8}{9}\)
Giá trị nào của $x$ thỏa mãn \(\dfrac{3}{{1 - 2x}} = \dfrac{{ - 5}}{{3x - 2}}\)
-
A.
\(x = - 1\)
-
B.
\(x = 1\)
-
C.
\(x = 2\)
-
D.
\(x = 3\)
Tìm số hữu tỉ $x$ biết rằng \(\dfrac{x}{{{y^2}}} = 2\) và \(\dfrac{x}{y} = 16\)\(\left( {y \ne 0} \right).\)
-
A.
\(x = 16\)
-
B.
\(x = 128\)
-
C.
\(x = 8\)
-
D.
\(x = 256\)
Lời giải và đáp án
Chỉ ra đáp án sai: Từ tỉ lệ thức \(\dfrac{5}{9} = \dfrac{{35}}{{63}}\) ta có tỉ lệ thức sau:
-
A.
\(\dfrac{5}{{35}} = \dfrac{9}{{63}}\)
-
B.
\(\dfrac{{63}}{9} = \dfrac{{35}}{5}\)
-
C.
\(\dfrac{{35}}{9} = \dfrac{{63}}{5}\)
-
D.
\(\dfrac{{63}}{{35}} = \dfrac{9}{5}\)
Đáp án : C
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\)( b, d khác 0)
Xét đáp án C: \(35.5 \ne 63.9\) do đó \(\dfrac{{35}}{9} \ne \dfrac{{63}}{5}\)nên C sai
Các tỉ số nào sau đây lập thành một tỉ lệ thức?
-
A.
\(\dfrac{7}{{12}}\) và \(\dfrac{5}{6}:\dfrac{4}{3}\)
-
B.
\(\dfrac{6}{7}:\dfrac{{14}}{5}\) và \(\dfrac{7}{3}:\dfrac{2}{9}\)
-
C.
\(\dfrac{{15}}{{21}}\) và \( - \dfrac{{125}}{{175}}\)
-
D.
\(\dfrac{{ - 1}}{3}\) và \(\dfrac{{ - 19}}{{57}}\)
Đáp án : D
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\)( b, d khác 0)
Ta có : \(\dfrac{5}{6}:\dfrac{4}{3} = \dfrac{5}{6}.\dfrac{3}{4} = \dfrac{5}{8} \ne \dfrac{7}{{12}}\) nên A sai.
\(\dfrac{6}{7}:\dfrac{{14}}{5} = \dfrac{6}{7}.\dfrac{5}{{14}} = \dfrac{{15}}{{49}}\) và \(\dfrac{7}{3}:\dfrac{2}{9} = \dfrac{7}{3}.\dfrac{9}{2} = \dfrac{{21}}{2} \ne \dfrac{{15}}{{49}}\) nên B sai.
\(\dfrac{{15}}{{21}} = \dfrac{5}{7} \ne - \dfrac{{125}}{{175}}\) nên C sai.
Ta có \(\dfrac{{ - 1}}{3} = \dfrac{{ - 19}}{{57}}\) vì \(\left( { - 1} \right).{\rm{ }}57 = 3.\left( { - 19} \right) = - 57\).
Do đó \(\dfrac{{ - 1}}{3}\) và \(\dfrac{{ - 19}}{{57}}\) lập thành tỉ lệ thức nên D đúng.
Cho bốn số \(2;{\rm{ }}5;{\rm{ }}a;{\rm{ }}b\) với \(a, b \ne 0\) và \(2a = 5b\), một tỉ lệ thức đúng được thiết lập từ bốn số trên là:
-
A.
\(\dfrac{2}{a} = \dfrac{5}{b}\)
-
B.
\(\dfrac{b}{5} = \dfrac{2}{a}\)
-
C.
\(\dfrac{2}{5} = \dfrac{a}{b}\)
-
D.
\(\dfrac{2}{b} = \dfrac{5}{a}\)
Đáp án : D
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\)( b, d khác 0)
Ta thấy ở đáp án D: \(\dfrac{2}{b} = \dfrac{5}{a} \Leftrightarrow 2a = 5b\) nên D đúng.
Tìm \(x\) biết \(\dfrac{{ - 1}}{2}:(2x - 1) = 0,2:\dfrac{{ - 3}}{5}\)
-
A.
\(x = \dfrac{1}{5}\)
-
B.
\(x = - \dfrac{5}{4}\)
-
C.
\(x = \dfrac{5}{4}\)
-
D.
\(x = \dfrac{4}{5}\)
Đáp án : C
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\) ( b, d khác 0) để từ đó tìm \(x\).
\(\dfrac{{ - 1}}{2}:(2x - 1) = 0,2:\dfrac{{ - 3}}{5}\)
\( \Leftrightarrow \)\(\dfrac{{\dfrac{{ - 1}}{2}}}{{2x - 1}} = \dfrac{{0,2}}{{\dfrac{{ - 3}}{5}}}\)
\( \Leftrightarrow \)\(0,2.(2x - 1) = \dfrac{{ - 1}}{2}.\dfrac{{ - 3}}{5}\)
\( \Leftrightarrow \)\(2x - 1 = \dfrac{3}{{10}}:0,2\)
\( \Leftrightarrow \)\(2x - 1 = \dfrac{3}{2}\)
\( \Leftrightarrow \)\(x = \dfrac{5}{4}\)
Vậy \(x = \dfrac{5}{4}\)
Có bao nhiêu giá trị \(x\) thỏa mãn \(\dfrac{{16}}{x} = \dfrac{x}{{25}}\)
-
A.
\(1\)
-
B.
\(2\)
-
C.
\(0\)
-
D.
\(3\)
Đáp án : B
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\)( b, d khác 0) để từ đó tìm \(x\).
Chú ý: Nếu x 2 = a 2 thì x = a hoặc x = -a
\(\dfrac{{16}}{x} = \dfrac{x}{{25}}\)
\( \Leftrightarrow \)x 2 = 16 . 25
\( \Leftrightarrow \)x 2 = 400
\( \Leftrightarrow \)\(x = 20\) hoặc \(x = - 20\)
Vậy \(x = 20\) hoặc \(x = - 20\).
Cho tỉ lệ thức \(\dfrac{x}{{15}} = \dfrac{{ - 4}}{5}\) thì:
-
A.
\(x = \)\(\dfrac{{ - 4}}{3}\)
-
B.
\(x = 4\)
-
C.
\(x = - 12\)
-
D.
\(x = - 10\)
Đáp án : C
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\)( b, d khác 0) để từ đó tìm \(x\).
\(\dfrac{x}{{15}} = \dfrac{{ - 4}}{5}\)
\(\Leftrightarrow x.5 = 15.(-4)\)
\(\Leftrightarrow 5x = -60\)
\(\Leftrightarrow x = -60 : 5\)
\(\Leftrightarrow x = -12\)
Vậy x = -12.
Biết cứ xay 100kg thóc thì được 60kg gạo. Hỏi muốn có 3 tạ gạo thì phải xay bao nhiêu tạ thóc?
-
A.
180 kg
-
B.
5 tạ
-
C.
2 tạ
-
D.
600 kg
Đáp án : B
Tỉ lệ thóc : gạo xay được là không đổi
Gọi khối lượng thóc cần để xay được 3 tạ = 300 kg gạo là x (kg) (x > 0 )
Vì tỉ lệ thóc : gạo xay được là không đổi nên ta có:
\(\dfrac{{100}}{{60}} = \dfrac{x}{{300}}\)
\(\begin{array}{l} \Leftrightarrow 60x = 100.300\\ \Leftrightarrow x = 500\end{array}\)
Vậy cần 500 kg = 5 tấn thóc để xay được 3 tạ gạo
Giá trị nào của \(x\) thỏa mãn \(\dfrac{{ - 3}}{{x - 2}} = \dfrac{7}{{6 - 3x}}\)
-
A.
x = 0
-
B.
x = -1
-
C.
\(x = 2\)
-
D.
Không có giá trị nào của x thỏa mãn
Đáp án : D
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\) ( b, d khác 0) để từ đó tìm \(x\).
Ta có: \(\dfrac{{ - 3}}{{x - 2}} = \dfrac{7}{{6 - 3x}}\) (Điều kiện: \(x - 2 \ne 0;6 - 3x \ne 0 \Leftrightarrow x \ne 2\))
\(\begin{array}{l} \Leftrightarrow - 3.(6 - 3x) = 7.(x - 2)\\ \Leftrightarrow - 18 + 9x = 7x - 14\\ \Leftrightarrow 9x - 7x = - 14 + 18\\ \Leftrightarrow 2x = 4\end{array}\)
\( \Leftrightarrow \) x = 2 ( Loại vì không thỏa mãn điều kiện)
Vậy không tìm được x thỏa mãn điều kiện
Tìm số hữu tỉ x biết rằng \(\dfrac{x}{{{y^2}}} = 2\) và \(\dfrac{x}{y} = 16\) \(\left( {y \ne 0} \right).\)
-
A.
\(x = 16\)
-
B.
\(x = 128\)
-
C.
\(x = 8\)
-
D.
\(x = 256\)
Đáp án : B
Từ giả thiết biến đổi để tìm được \(y\), từ đó thay \(y\) vào \(\dfrac{x}{y} = 16\) để tìm \(x\)
Ta có \(\dfrac{x}{{{y^2}}} = 2\) nên \(\dfrac{x}{y}.\dfrac{1}{y} = 2\), mà \(\dfrac{x}{y} = 16\). Do đó:
\( \Leftrightarrow \)\(16.\dfrac{1}{y} = 2\)
\( \Leftrightarrow \)\(\dfrac{1}{y} = \dfrac{1}{8}\)
\( \Leftrightarrow \)\(y = 8\)
Thay \(y = 8\) vào \(\dfrac{x}{y} = 16\) ta được: \(\dfrac{x}{8} = 16\) nên \(x = 16.8 = 128\).
Chọn câu đúng. Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì
-
A.
\(a = c\)
-
B.
\(a.c = b.d\)
-
C.
\(a.d = b.c\)
-
D.
\(b = d\)
Đáp án : C
Ta có Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(a.d = b.c\)
Chỉ ra đáp án sai: Từ tỉ lệ thức $\dfrac{5}{9} = \dfrac{{35}}{{63}}$ ta có tỉ lệ thức sau :
-
A.
$\dfrac{5}{{35}} = \dfrac{9}{{63}}$
-
B.
$\dfrac{{63}}{9} = \dfrac{{35}}{5}$
-
C.
$\dfrac{{35}}{9} = \dfrac{{63}}{5}$
-
D.
$\dfrac{{63}}{{35}} = \dfrac{9}{5}$
Đáp án : C
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\)
Ta có ở đáp án C: \(35.5 \ne 63.9\) do đó $\dfrac{{35}}{9} \ne \dfrac{{63}}{5}$
Các tỉ số nào sau đây lập thành một tỉ lệ thức?
-
A.
$\dfrac{7}{{12}}$ và $\dfrac{5}{6}:\dfrac{4}{3}$
-
B.
$\dfrac{6}{7}:\dfrac{{14}}{5}$ và $\dfrac{7}{3}:\dfrac{2}{9}$
-
C.
$\dfrac{{15}}{{21}}$ và $-\dfrac{{125}}{{175}}$
-
D.
$\dfrac{{ - 1}}{3}$ và $\dfrac{{ - 19}}{{57}}$
Đáp án : D
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\)
Ta có $\dfrac{{ - 1}}{3} = \dfrac{{ - 19}}{{57}}$ vì $\left( { - 1} \right).{\rm{ }}57 = 3.\left( { - 19} \right) = - 57$.
Do đó $\dfrac{{ - 1}}{3}$ và $\dfrac{{ - 19}}{{57}}$ lập thành tỉ lệ thức.
Ngoài ra, $\dfrac{5}{6}:\dfrac{4}{3} = \dfrac{5}{6}.\dfrac{3}{4} = \dfrac{5}{8} \ne \dfrac{7}{{12}}$ nên A sai.
$\dfrac{6}{7}:\dfrac{{14}}{5} = \dfrac{6}{7}.\dfrac{5}{{14}} = \dfrac{{15}}{{49}}$ và $\dfrac{7}{3}:\dfrac{2}{9} = \dfrac{7}{3}.\dfrac{9}{2} = \dfrac{{21}}{2} \ne \dfrac{{15}}{{49}}$ nên B sai.
$\dfrac{{15}}{{21}} = \dfrac{5}{7} \ne - \dfrac{{125}}{{175}}$ nên C sai.
Các tỉ lệ thức có thể được từ đẳng thức \(5.\left( { - 27} \right) = \left( { - 9} \right).15\) là
-
A.
$\dfrac{5}{{15}} = \dfrac{{ - 9}}{{ - 27}};\,\dfrac{{15}}{5} = \dfrac{{ - 27}}{{ - 9}};\,\dfrac{5}{{ - 9}} = \dfrac{{15}}{{ - 27}};\,\dfrac{{ - 9}}{5} = \dfrac{{ - 27}}{{15}}$
-
B.
$\dfrac{5}{{15}} = \dfrac{{ - 9}}{{ - 27}};\,\dfrac{{15}}{5} = \dfrac{{ - 27}}{{ - 9}};\,\dfrac{5}{{ - 9}} = \dfrac{{15}}{{ - 27}};\,\dfrac{{ - 9}}{5} = \dfrac{{ - 15}}{{27}}$
-
C.
$\dfrac{5}{{15}} = \dfrac{{ - 9}}{{ - 27}};\,\dfrac{{15}}{5} = \dfrac{{ - 27}}{9}$
-
D.
$\dfrac{{15}}{5} = \dfrac{9}{{27}};\,\dfrac{{15}}{5} = \dfrac{{ - 27}}{{ - 9}};\,\dfrac{5}{{ - 9}} = \dfrac{{15}}{{ - 27}};\,\dfrac{{ - 9}}{5} = \dfrac{{ - 15}}{{27}}$
Đáp án : A
Sử dụng nếu \(ad = bc\) ta có các tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d}\); \(\dfrac{a}{c} = \dfrac{b}{d}\); \(\dfrac{d}{b} = \dfrac{c}{a};\) \(\dfrac{d}{c} = \dfrac{b}{a}\)
Ta có \(5.\left( { - 27} \right) = \left( { - 9} \right).15\)
Nên $\dfrac{5}{{15}} = \dfrac{{ - 9}}{{ - 27}};\,\dfrac{{15}}{5} = \dfrac{{ - 27}}{{ - 9}};\,\dfrac{5}{{ - 9}} = \dfrac{{15}}{{ - 27}};\,\dfrac{{ - 9}}{5} = \dfrac{{ - 27}}{{15}}$
Cho bốn số $2;{\rm{ }}5;{\rm{ }}a;{\rm{ }}b$ với \(a, b \ne 0\) và $2a = 5b$, một tỉ lệ thức đúng được thiết lập từ bốn số trên là:
-
A.
\(\dfrac{2}{a} = \dfrac{5}{b}\)
-
B.
\(\dfrac{b}{5} = \dfrac{2}{a}\)
-
C.
\(\dfrac{2}{5} = \dfrac{a}{b}\)
-
D.
\(\dfrac{2}{b} = \dfrac{5}{a}\)
Đáp án : D
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\)
Ta thấy ở đáp án D: \(\dfrac{2}{b} = \dfrac{5}{a} \Leftrightarrow 2a = 5b\) nên D đúng.
Tìm \(x\) biết \(\dfrac{{ - 1}}{2}:(2x - 1) = 0,2:\dfrac{{ - 3}}{5}\)
-
A.
\(x = \dfrac{1}{5}\)
-
B.
\(x = - \dfrac{5}{4}\)
-
C.
\(x = \dfrac{5}{4}\)
-
D.
\(x = \dfrac{4}{5}\)
Đáp án : C
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\) để từ đó rút ra tìm $x$.
\(\dfrac{{ - 1}}{2}:(2x - 1) = 0,2:\dfrac{{ - 3}}{5}\)
$\dfrac{{\dfrac{{ - 1}}{2}}}{{2x - 1}} = \dfrac{{0,2}}{{\dfrac{{ - 3}}{5}}}$
\(0,2.(2x - 1) = \dfrac{{ - 1}}{2}.\dfrac{{ - 3}}{5}\)
\(2x - 1 = \dfrac{3}{{10}}:0,2\)
\(2x - 1 = \dfrac{3}{2}\)
\(x = \dfrac{5}{4}\)
Vậy \(x = \dfrac{5}{4}\)
Có bao nhiêu giá trị \(x\) thỏa mãn \(\dfrac{{16}}{x} = \dfrac{x}{{25}}\)
-
A.
\(1\)
-
B.
\(2\)
-
C.
\(0\)
-
D.
\(3\)
Đáp án : B
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\) để từ đó rút ra tìm $x$.
\(\dfrac{{16}}{x} = \dfrac{x}{{25}}\)
$x.x=16.25$
\(\begin{array}{l}{x^2} = 16.25\\{x^2} = 400\end{array}\)
Suy ra $x = 20$ hoặc $x = - 20$
Vậy $x = 20$ hoặc \(x = - 20\).
Giá trị nào dưới đây của \(x\) thỏa mãn \(2,5:7,5 = x:\dfrac{3}{5}\)
-
A.
\(x = \dfrac{1}{5}\)
-
B.
\(x = 5\)
-
C.
\(x = \dfrac{1}{3}\)
-
D.
\(x = 3\)
Đáp án : A
Viết lại dưới dạng tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\) để từ đó rút ra tìm $x$.
Ta có \(2,5:7,5 = x:\dfrac{3}{5}\)
\(\dfrac{{2,5}}{{7,5}} = \dfrac{x}{{\dfrac{3}{5}}}\)
\(7,5.x = 2,5.\dfrac{3}{5}\)
\(7,5x = \dfrac{5}{2}.\dfrac{3}{5}\)
\(\dfrac{{15}}{2}x = \dfrac{3}{2}\)
\(x = \dfrac{3}{2}:\dfrac{{15}}{2}\)
\(x = \dfrac{1}{5}\)
Vậy \(x = \dfrac{1}{5}\).
Cho tỉ lệ thức $\dfrac{x}{{15}} = \dfrac{{ - 4}}{5}$ thì:
-
A.
$x = $$\dfrac{{ - 4}}{3}$
-
B.
$x = 4$
-
C.
$x = - 12$
-
D.
$x = - 10$
Đáp án : C
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\)
$\dfrac{x}{{15}} = \dfrac{{ - 4}}{5} \Leftrightarrow x.5 = - 4.15 \Leftrightarrow 5x = - 60 \Leftrightarrow x = - 12$
Biết rằng \(\dfrac{{2x - y}}{{x + y}} = \dfrac{2}{3}.\) Khi đó tỉ số \(\dfrac{x}{y}\) bằng
-
A.
\(\dfrac{x}{y} = \dfrac{3}{2}\)
-
B.
\(\dfrac{x}{y} = \dfrac{2}{3}\)
-
C.
\(\dfrac{x}{y} = \dfrac{4}{5}\)
-
D.
\(\dfrac{x}{y} = \dfrac{5}{4}\)
Đáp án : D
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\)
Từ đó suy ra tỉ số \(\dfrac{x}{y}\).
Ta có \(\dfrac{{2x - y}}{{x + y}} = \dfrac{2}{3}\)
nên \(3\left( {2x - y} \right) = 2\left( {x + y} \right)\)
\(6x - 3y = 2x + 2y\)
\(6x - 2x = 2y + 3y\)
\(4x = 5y\)
\(\dfrac{x}{y} = \dfrac{5}{4}\)
Vậy \(\dfrac{x}{y} = \dfrac{5}{4}\).
Biết \(\dfrac{t}{x} = \dfrac{4}{3};\)\(\dfrac{y}{z} = \dfrac{3}{2};\)\(\dfrac{z}{x} = \dfrac{1}{6},\) hãy tìm tỉ số \(\dfrac{t}{y}.\)
-
A.
\(\dfrac{t}{y} = \dfrac{3}{{16}}\)
-
B.
\(\dfrac{t}{y} = \dfrac{4}{3}\)
-
C.
\(\dfrac{t}{y} = \dfrac{{16}}{3}\)
-
D.
\(\dfrac{t}{y} = \dfrac{8}{9}\)
Đáp án : C
+ Phân tích \(\dfrac{t}{y} = \dfrac{t}{x}.\dfrac{x}{z}.\dfrac{z}{y}\) .
+ Từ giả thiết ta tính được các tỉ số \(\dfrac{x}{z};\,\dfrac{z}{y}\)
+ Từ đó tính được \(\dfrac{t}{y}\)
Ta có \(\dfrac{t}{y} = \dfrac{t}{x}.\dfrac{x}{z}.\dfrac{z}{y}\)
Vì \(\dfrac{z}{x} = \dfrac{1}{6}\) nên \(\dfrac{x}{z} = 6\); \(\dfrac{y}{z} = \dfrac{3}{2}\) nên \(\dfrac{z}{y} = \dfrac{2}{3}\)
Nên ta có \(\dfrac{t}{y} = \dfrac{t}{x}.\dfrac{x}{z}.\dfrac{z}{y} = \dfrac{4}{3}.6.\dfrac{2}{3} = \dfrac{{16}}{3}\)
Vậy \(\dfrac{t}{y} = \dfrac{{16}}{3}\) .
Giá trị nào của $x$ thỏa mãn \(\dfrac{3}{{1 - 2x}} = \dfrac{{ - 5}}{{3x - 2}}\)
-
A.
\(x = - 1\)
-
B.
\(x = 1\)
-
C.
\(x = 2\)
-
D.
\(x = 3\)
Đáp án : A
Áp dụng tính chất của tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow ad = bc\) để từ đó rút ra tìm $x$.
\(\dfrac{3}{{1 - 2x}} = \dfrac{{ - 5}}{{3x - 2}}\)
\(3.(3x - 2) = - 5.(1 - 2x)\)
\(9x - 6 = - 5 + 10x\)
\( - 6 + 5 = 10x - 9x\)
\(x = - 1\)
Vậy $x = - 1$
Tìm số hữu tỉ $x$ biết rằng \(\dfrac{x}{{{y^2}}} = 2\) và \(\dfrac{x}{y} = 16\)\(\left( {y \ne 0} \right).\)
-
A.
\(x = 16\)
-
B.
\(x = 128\)
-
C.
\(x = 8\)
-
D.
\(x = 256\)
Đáp án : B
Từ giả thiết biến đổi để tìm được \(y\), từ đó thay \(y\) vào \(\dfrac{x}{y} = 16\) để tìm \(x\)
Ta có \(\dfrac{x}{{{y^2}}} = 2\) nên \(\dfrac{x}{y}.\dfrac{1}{y} = 2\) mà \(\dfrac{x}{y} = 16\) , do đó
\(16.\dfrac{1}{y} = 2\)
\(\dfrac{1}{y} = \dfrac{1}{8}\)
\(y = 8\)
Thay \(y = 8\) vào \(\dfrac{x}{y} = 16\) ta được: \(\dfrac{x}{8} = 16\) suy ra \(x = 16.8 = 128\).