Bài 1 trang 99 SGK Toán 9 tập 1 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 1. Sự xác định của đường tròn. Tính chất đối xứng c


Bài 1 trang 99 SGK Toán 9 tập 1

Cho hình chữ nhật ABCD có AB=12cm, BC=5cm. Chứng minh rằng bốn điểm A, B, C, D thuộc cùng một đường tròn...

Đề bài

Cho hình chữ nhật \(ABCD\) có \(AB=12cm,\ BC=5cm\). Chứng minh rằng bốn điểm \(A,\ B,\ C,\ D\) thuộc cùng một đường tròn. Tính bán kính của đường tròn đó.

Phương pháp giải - Xem chi tiết

+) Để chứng minh nhiều điểm cùng nằm trên một đường tròn, ta chứng minh các điểm này cùng cách đều một điểm.

+) Sử dụng tính chất của hình chữ nhật: \(ABCD\) là hình chữ nhật, hai đường chéo cắt nhau tại \(O\) thì ta có \(OA=OB=OC=OD=\dfrac{AC}{2}=\dfrac{BD}{2}\).

+) Định lí Pytago: \(\Delta{ABC}\) vuông tại \(C\) thì \(BC^2=AB^2+AC^2.\)

Lời giải chi tiết

Gọi \(O\) là giao điểm hai đường chéo của hình chữ nhật, ta có \(OA = OB = OC = OD \) (tính chất) nên bốn điểm này cùng thuộc đường tròn tâm \(O\), bán kính \(R=OA\).

Xét tam giác \(ABC\) vuông tại \(B\), áp dụng định lí Pytago, ta có:

\(AC^{2}=AB^{2}+BC^{2}=12^{2}+5^{2}=169\)

\(\Rightarrow AC=\sqrt{169}=13\,cm\)

\(\Rightarrow R=OA=\dfrac{13}{2}=6,5\,cm\)

Vậy bán kính của đường tròn là: \(R=6,5\,cm.\)


Cùng chủ đề:

Bài 1 trang 7 SGK Toán 9 tập 2
Bài 1 trang 30 SGK Toán 9 tập 2
Bài 1 trang 44 SGK Toán 9 tập 1
Bài 1 trang 68 SGK Toán 9 tập 1
Bài 1 trang 68 SGK Toán 9 tập 2
Bài 1 trang 99 SGK Toán 9 tập 1
Bài 1 trang 110 SGK Toán 9 tập 2
Bài 1 trang 131 SGK Toán 9 tập 2
Bài 1 trang 134 SGK Toán 9 tập 2
Bài 2 trang 6 SGK Toán 9 tập 1
Bài 2 trang 7 SGK Toán 9 tập 2