Bài 58 trang 90 SGK Toán 9 tập 2 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 7. Tứ giác nội tiếp


Bài 58 trang 90 SGK Toán 9 tập 2

Cho tam giác đều ABC.

Đề bài

Cho tam giác đều \(ABC.\) Trên nửa mặt phẳng bờ \(BC\) không chứa đỉnh \(A,\) lấy điểm \(D\) sao cho \(DB = DC\) và \(\widehat{DCB}=\dfrac{1}{2}\widehat{ACB}.\)

a) Chứng minh \(ABDC\) là tứ giác nội tiếp.

b) Xác định tâm của đường tròn đi qua bốn điểm \(A,\, B,\, D, \,C\).

Phương pháp giải - Xem chi tiết

a ) +) Tứ giác có tổng hai góc đối diện bằng \(180^0\) thì tứ giác đó là tứ giác nội tiếp.

+) Sử dụng tính chất tam giác đều, tính chất tam giác cân

b) Trong tam giác vuông, tâm đường tròn ngoại tiếp là trung điểm cạnh huyền

Lời giải chi tiết

a) Vì tam giác ABC đều (gt) nên \(\widehat{ACB}=60^0\)

\(\Rightarrow\) \(\widehat{DCB}=\dfrac{1}{2}\widehat{ACB} = \dfrac{1}{2} .60^0= 30^0.\)

\(\widehat{ACD}=\widehat{ACB} +\widehat{BCD}\)  (tia \(CB\) nằm giữa hai tia \(CA,\, CD\))

\(\Rightarrow\)\(\widehat{ACD}=60^0+ 30^0=90^0\)  (1)

Do \(DB = CD\) nên \(∆BDC\) cân tại \(D\) \(\Rightarrow \widehat{DBC} = \widehat{DCB} = 30^0\)

Từ đó \(\widehat{ABD}= 30^0+60^0=90^0\) (2)

Từ (1) và (2) có \(\widehat{ACD}+ \widehat{ABD}=180^0\) nên tứ giác \(ABDC\) là tứ giác nội tiếp.

b) Vì \(\widehat{ABD}  = 90^0\) nên \(AD\) là đường kính của đường tròn ngoại tiếp tam giác ABD. Mà ABDC là tứ giác nội tiếp nên \(AD\) cũng là đường kính của đường tròn ngoại tiếp tứ giác ABDC. Vậy tâm đường tròn ngoại tiếp tứ giác \(ABDC\) là trung điểm \(AD.\)


Cùng chủ đề:

Bài 57 trang 30 SGK Toán 9 tập 1
Bài 57 trang 63 SGK Toán 9 tập 2
Bài 57 trang 89 SGK Toán 9 tập 2
Bài 58 trang 32 SGK Toán 9 tập 1
Bài 58 trang 63 SGK Toán 9 tập 2
Bài 58 trang 90 SGK Toán 9 tập 2
Bài 59 trang 32 SGK Toán 9 tập 1
Bài 59 trang 63 SGK Toán 9 tập 2
Bài 59 trang 90 SGK Toán 9 tập 2
Bài 60 trang 33 SGK Toán 9 tập 1
Bài 60 trang 64 SGK Toán 9 tập 2