Đề kiểm tra 15 phút - Đề số 5 - Bài 3 - Chương 1 - Hình học 9
Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 3 - Chương 1 - Hình học 9
Đề bài
Bài 1. Không dùng bảng lượng giác và máy tính, hãy so sánh:
a. tan28˚ và sin28˚
b. tan32˚ và cos58˚
Bài 2. Cho ∆ABC vuông tại A. Chứng minh rằng: \(\tan {{\widehat {ABC}} \over 2} = {{AC} \over {AB + BC}}\)
LG bài 1
Phương pháp giải:
Sử dụng: \(\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }}\)
Khi góc α tăng từ 0° đến 90° (0°<α < 90°) thì sinα và tgα tăng
Lời giải chi tiết:
a. Ta có: 0 < cosα < 1 và tanα > 0
\(\eqalign{ & \Rightarrow \tan \alpha .\cos \alpha < \tan \alpha \cr & \Rightarrow {{\sin \alpha } \over {\cos \alpha }}.\cos \alpha < \tan \alpha \cr & \Rightarrow \sin \alpha < \tan \alpha \cr} \)
với \(α = 28^o\) , ta có: \(\sin28^o < \tan28^o\).
Cách khác : Dựng ∆ABC vuông tại A và \(\widehat C = 28^\circ \)
Ta có: \(\sin 28^\circ = {{AB} \over {BC}};\tan 28^\circ = {{AB} \over {AC}}\)
mà \(BC > AC\) (cạnh huyền > cạnh góc vuông)
\( \Rightarrow {{AB} \over {BC}} < {{AB} \over {AC}}\,hay\,\sin 28^\circ < \tan 28^\circ \)
b. \(\cos 58^o = \sin(90^o - 58^o) = \sin 32^o\)
Theo chứng minh câu a : \(\sin32^o < \tan32^o\) hay \(\cos58^o < \tan32^o\)
LG bài 2
Phương pháp giải:
Sử dụng tích chất đường phân giác của tam giác và định nghĩa tỉ số lượng giác của góc nhọn.
Lời giải chi tiết:
Vẽ phân giác BD, ta có: \({{DA} \over {DC}} = {{BA} \over {BC}}\)
\( \Rightarrow {{DA} \over {AB}} = {{DC} \over {BC}} = {{DA + DC} \over {AB + BC}} = {{AC} \over {AB + BC}}\) (1)
Mặt khác \(∆ABD\) vuông tại A, ta có:
\(\tan \widehat {ABD} = \tan {{\widehat {ABC}} \over 2} = {{DA} \over {AB}}\)
Từ (1) và (2) \( \Rightarrow \tan {{\widehat {ABC}} \over 2} = {{AC} \over {AB + BC}}\)