Đề kiểm tra giữa học kì 1 Toán 6 Kết nối tri thức - Đề số 1 — Không quảng cáo

Đề thi, đề kiểm tra Toán lớp 6 - Kết nối tri thức


Đề kiểm tra giữa học kì 1 Toán 6 Kết nối tri thức - Đề số 1

Đề bài

Câu 1 :

Khẳng định nào sau đây đúng ?

  • A.

    \(250 \vdots 25\)

  • B.

    \(51 \vdots 7\)

  • C.

    \(36 \vdots 16\)

  • D.

    \(48 \vdots 18\)

Câu 2 :

Tập hợp số tự nhiên được kí hiệu là

  • A.

    \(N\)

  • B.

    \({N^*}\)

  • C.

    \(\left\{ N \right\}\)

  • D.

    \(Z\)

Câu 3 :

Tập hợp \(C\) các số tự nhiên \(x\) sao cho \(x - 10 = 15\) có số phần tử là

  • A.

    \(4\)

  • B.

    \(2\)

  • C.

    \(1\)

  • D.

    \(3\)

Câu 4 :

Cho phép tính \(x:3 = 6\), khi đó thương của phép chia là

  • A.

    \(x\)

  • B.

    \(6\)

  • C.

    \(3\)

  • D.

    \(18\)

Câu 5 :

Thay dấu * để được số nguyên tố $\overline {3*} $:

  • A.

    $7$

  • B.

    $4$

  • C.

    $6$

  • D.

    $9$

Câu 6 :

Với \(x \ne 0\) ta có \({x^8}:{x^2}\) bằng:

  • A.

    \({x^4}\)

  • B.

    \({x^6}\)

  • C.

    \(x\)

  • D.

    \({x^{10}}\)

Câu 7 :

6+6+6+6 bằng

  • A.
    6
  • B.
    6.2
  • C.
    6.4
  • D.
    64
Câu 8 :

Sau khi phân tích 45, 150 ra các thừa số nguyên tố. Tất cả các thừa số chung của hai số này là:

  • A.

    2 và 3

  • B.

    2 và 5

  • C.

    3 và 5

  • D.

    5

Câu 9 :

Các số có tổng … chia hết cho 3 thì chia hết cho 3 và chỉ những số đó mới chia hết cho 3.

  • A.

    các chữ số

  • B.

    tổng các chữ số

  • C.

    các số

  • D.

    chữ số tận cùng

Câu 10 :

Tính \(\left( {368 + 764} \right) - \left( {363 + 759} \right)\), ta được

  • A.

    \(10\)

  • B.

    \(20\)

  • C.

    \(30\)

  • D.

    \(100\)

Câu 11 :

Viết tập hợp sau bằng cách liệt kê các phần tử: \(A = \left\{ {a \in \mathbb{N}^*\left| {a < 5} \right.} \right\}\)

  • A.

    \(A = \left\{ {0;1;2;3;4} \right\}\)

  • B.

    \(A = \left\{ {0,1,2,3,4,5} \right\}\)

  • C.

    \(A = \left\{ {1;2;3;4;5} \right\}\)

  • D.

    \(A = \left\{ {1;2;3;4} \right\}\)

Câu 12 :

Dạng tổng quát của số tự nhiên chia cho \(5\) dư \(2\) là

  • A.

    \(2k + 5\,\left( {k \in N} \right)\)

  • B.

    \(5k + 2\,\left( {k \in N} \right)\)

  • C.

    \(2k\,\left( {k \in N} \right)\)

  • D.

    \(5k + 4\,\left( {k \in N} \right)\)

Câu 13 :

Cho \(\overline {1a52} \) chia hết cho 9. Số thay thế cho \(a\) có thể là

  • A.
    1
  • B.
    2
  • C.
    3
  • D.
    5
Câu 14 :

Chọn khẳng định đúng:

  • A.

    Mọi số tự nhiên đều có ước chung với nhau.

  • B.

    Mọi số tự nhiên đều có ước là $0$  .

  • C.

    Số nguyên tố chỉ có đúng $1$ ước là chính nó.

  • D.

    Hai số nguyên tố khác nhau thì không có ước chung.

Câu 15 :

Chọn khẳng định đúng:

  • A.

    Mọi số tự nhiên đều có ước chung với nhau.

  • B.

    Mọi số tự nhiên đều có ước là 0

  • C.

    Số nguyên tố chỉ có đúng $1$ ước là chính nó.

  • D.

    Hai số nguyên tố khác nhau thì không có ước chung

Câu 16 :

Số tự nhiên \(a\) chia cho \(65\) dư \(10.\) Khi đó số tự nhiên \(a\)

  • A.

    Chia cho \(5\) dư \(1.\)

  • B.

    Chia cho \(5\) dư \(4.\)

  • C.

    Chia cho \(5\) dư \(3.\)

  • D.

    Chia hết cho \(5.\)

Câu 17 :

Tìm $BCNN\left( {38,76} \right)$

  • A.

    $2888$

  • B.

    $37$

  • C.

    $76$

  • D.

    $144$

Câu 18 :

Tích \(25.9676.4\) bằng với

  • A.

    \(1000.9676\)

  • B.

    \(9676 + 100\)

  • C.

    \(9676.100\)

  • D.

    \(9676.10\)

Câu 19 :

Cho \(a \vdots m\) và \(b \vdots m\) và  \(c \vdots m\) với m là số tự nhiên khác 0. Các số a,b,c là số tự nhiên tùy ý.

Khẳng định nào sau đây chưa đúng?

(Xét trong tập số tự nhiên, số bị trừ phải lớn hơn hoặc bằng số trừ)

  • A.

    \(\left( {a + b} \right) \vdots m\)

  • B.

    \(\left( {a - b} \right) \vdots m\)

  • C.

    \(\left( {a + b + c} \right) \vdots m\)

  • D.

    \(\left( {b + c} \right) \vdots m\)

Câu 20 :

Cho \(\overline {17*} \) chia hết cho 2. Số thay thế cho * có thể là

  • A.
    1
  • B.
    2
  • C.
    3
  • D.
    5
Câu 21 :

$BCNN(9;24)$ là bao nhiêu?

  • A.

    $54$

  • B.

    $18$

  • C.

    $72$

  • D.

    $36$

Câu 22 :

Tính: \(1 + 12.3.5\)

  • A.

    181

  • B.

    195

  • C.

    180

  • D.

    15

Câu 23 :

Có bao nhiêu số có ba chữ số là bội chung của a và b, biết rằng BCNN(a,b)=300.

  • A.

    1

  • B.

    2

  • C.

    3

  • D.

    300

Câu 24 :

Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?

  • A.

    \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)

  • B.

    \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

  • C.

    \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)

  • D.

    \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

Câu 25 :

Một ước nguyên tố của 91 là

  • A.

    1

  • B.

    2

  • C.

    3

  • D.

    7

Câu 26 :

Tích \(10.10.10.100\) được viết dưới dạng lũy thừa gọn nhất là

  • A.

    \({10^5}\)

  • B.

    \({10^4}\)

  • C.

    \({100^2}\)

  • D.

    \({20^5}\)

Câu 27 :

Hệ Mặt Trời gồm có Mặt Trời ở trung tâm và 8 thiên thể quanh quanh Mặt Trời gọi là các hành tinh. Đó là sao Thủy, Sao Kim, Trái Đất, Sao Hỏa, Sao Mộc, Sao Thổ, Sao Thiên Vương, Sao Hải Vương.

Cho S là tập hợp các hành tinh của Hệ Mặt Trời. Khẳng định nào sau đây đúng ?

  • A.

    S là tập hợp có 8 phần tử.

  • B.

    Sao Thủy không thuộc S.

  • C.

    S là tập hợp có 9 phần tử.

  • D.

    Mặt Trời là một phần tử của S.

Câu 28 :

Khẳng định nào là sai:

  • A.

    $0$  và $1$  không là số nguyên tố cũng không phải hợp số.

  • B.

    Cho số $a > 1$, $a$  có $2$  ước thì $a$  là hợp số.

  • C.

    $2$ là số nguyên tố chẵn duy nhất.

  • D.

    Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó.

Câu 29 :

Tập hợp \(P\) gồm các số tự nhiên lớn hơn \(50\) và không lớn hơn \(57\). Kết luận nào sau đây là sai?

  • A.

    \(55 \in P\)

  • B.

    \(57 \in P\)

  • C.

    \(50 \notin P\)

  • D.

    \(58 \in P\)

Câu 30 :

\(5269 + 2017\,\,...\,\,2017 + 5962\).

Dấu thích hợp điền vào chỗ chấm là:

A. \( < \)

B. \( > \)

C. \( = \)

Câu 31 :

Kết quả của phép tính \(90 - 85 + 80 - 75 + 70 - 65 + 60 - 55 + 50 - 45\) là

  • A.

    \(25\)

  • B.

    \(20\)

  • C.

    \(30\)

  • D.

    \(35\)

Câu 32 :

Tổng \(1 + 3 + 5 + 7 + ... + 95 + 97\) là

  • A.

    Số có chữ số tận cùng là \(7.\)

  • B.

    Số có chữ số tận cùng là \(2.\)

  • C.

    Số có chữ số tận cùng là \(3.\)

  • D.

    Số có chữ số tận cùng là \(1.\)

Câu 33 :

Kết quả của phép tính \(\left( {158.129 - 158.39} \right):180\) có chữ số tận cùng là

  • A.

    \(8\)

  • B.

    \(79\)

  • C.

    \(9\)

  • D.

    \(5\)

Câu 34 :

Với $a,b$ là các số tự nhiên, nếu \(10a + b\) chia hết cho $13$  thì \(a + 4b\) chia hết cho số nào dưới đây?

  • A.

    \(3\)

  • B.

    \(5\)

  • C.

    \(26\)

  • D.

    \(13\)

Câu 35 :

Cho $5$ số $0;1;3;6;7.$ Có bao nhiêu số tự nhiên có ba chữ số và chia hết cho 3 được lập từ các số trên mà các chữ số không lặp lại.

  • A.

    $1$

  • B.

    $4$

  • C.

    $3$

  • D.

    $2$

Câu 36 :

Cho tập hợp $X$ là ước của $35$ và lớn hơn $5$. Cho tập $Y$ là bội của $8$ và nhỏ hơn $50$.

Gọi $M$ là giao của $2$  tập hợp $X$ và $Y$, tập hợp $M$ có bao nhiêu phần tử?

  • A.

    $2$

  • B.

    $1$

  • C.

    $0$

  • D.

    $3$

Câu 37 :

Cho $36 = {2^2}{.3^2};60 = {2^2}.3.5;72 = {2^3}{.3^2}$. Ta có $ƯCLN(36;60;72)$là:

  • A.

    ${2^3}.3.5$

  • B.

    ${2^2}{.3^2}$

  • C.

    ${2^2}.3$

  • D.

    $3.5$

Câu 38 :

Cho \(A = 3 + {3^2} + {3^3} + ... + {3^{100}}\) . Tìm số tự nhiên \(n\) biết rằng \(2A + 3 = {3^n}.\)

  • A.

    \(n = 99\)

  • B.

    \(n = 100\)

  • C.

    \(n = 101\)

  • D.

    \(n = 102\)

Câu 39 :

Cho  2 số: $14n + 3$ và $21n + 4$ với $n$ là số tự nhiên, chọn đáp án đúng.

  • A.

    Hai số trên có hai ước chung

  • B.

    Hai số trên có ba ước chung

  • C.

    Hai số trên là hai số nguyên tố cùng nhau

  • D.

    Hai số trên chỉ có một ước chung là 3.

Câu 40 :

Tìm số \(\overline {xy} \) biết \(\overline {xy} .\overline {xyx}  = \overline {xyxy} \)

  • A.

    \(10\)

  • B.

    \(11\)

  • C.

    \(12\)

  • D.

    \(13\)

Lời giải và đáp án

Câu 1 :

Khẳng định nào sau đây đúng ?

  • A.

    \(250 \vdots 25\)

  • B.

    \(51 \vdots 7\)

  • C.

    \(36 \vdots 16\)

  • D.

    \(48 \vdots 18\)

Đáp án : A

Phương pháp giải :

Cho hai số tự nhiên \(a\) \(b,\) trong đó \(b \ne 0,\) nếu có số tự nhiên \(x\) sao cho \(b.x = a\) thì ta nói \(a\) chia hết cho \(b\) và ta có phép chia hết \(a:b = x\) , kí hiệu là \(a \vdots b\) .

Lời giải chi tiết :

Ta có: 25.10=250 nên \(250 \vdots 25\)

Câu 2 :

Tập hợp số tự nhiên được kí hiệu là

  • A.

    \(N\)

  • B.

    \({N^*}\)

  • C.

    \(\left\{ N \right\}\)

  • D.

    \(Z\)

Đáp án : A

Lời giải chi tiết :

Tập hợp số tự nhiên kí hiệu là N.

Câu 3 :

Tập hợp \(C\) các số tự nhiên \(x\) sao cho \(x - 10 = 15\) có số phần tử là

  • A.

    \(4\)

  • B.

    \(2\)

  • C.

    \(1\)

  • D.

    \(3\)

Đáp án : C

Phương pháp giải :

Tìm các giá trị của \(x\) thỏa mãn \(x - 10 = 15\)

Sau đó suy ra số phần tử của tập hợp \(C.\)

Lời giải chi tiết :

Ta có \(x - 10 = 15\)

\(x = 15+10\)

$x=25$

nên \(C = \left\{ {25} \right\}\) do đó \(C\) có một phần tử.

Câu 4 :

Cho phép tính \(x:3 = 6\), khi đó thương của phép chia là

  • A.

    \(x\)

  • B.

    \(6\)

  • C.

    \(3\)

  • D.

    \(18\)

Đáp án : B

Phương pháp giải :

Ta sử dụng (số bị chia) : (số chia) = (thương) để xác định thương của phép chia

Lời giải chi tiết :

Phép chia \(x:3 = 6\) có \(x\) là số bị chia; \(3\) là số chia và \(6\) là thương.

Nên thương của phép chia là \(6.\)

Câu 5 :

Thay dấu * để được số nguyên tố $\overline {3*} $:

  • A.

    $7$

  • B.

    $4$

  • C.

    $6$

  • D.

    $9$

Đáp án : A

Phương pháp giải :

- Dấu * có thể nhận các giá trị ${\rm{\{ 7; 4; 6; 9\} }}$

- Dùng định nghĩa số nguyên tố để tìm ra số nguyên tố.

Lời giải chi tiết :

Đáp án A: Vì $37$  chỉ chia hết cho \(1\) và \(37\) nên \(37\) là số nguyên tố, do đó chọn A.

Đáp án B: $34$  không phải là số nguyên tố ($34$  chia hết cho $\left\{ {2;{\rm{ }}4;{\rm{ }} \ldots } \right\}$). Do đó loại B.

Đáp án C: $36$  không phải là số nguyên tố ($36$ chia hết cho $\left\{ {1;\,\,2;{\rm{ 3;}}\,...;\,{\rm{36}}} \right\}$). Do đó loại C.

Đáp án D: $39$  không phải là số nguyên tố ($39$ chia hết cho $\left\{ {1;\,\,3;...\,;\,39} \right\}).$ Do đó loại D.

Câu 6 :

Với \(x \ne 0\) ta có \({x^8}:{x^2}\) bằng:

  • A.

    \({x^4}\)

  • B.

    \({x^6}\)

  • C.

    \(x\)

  • D.

    \({x^{10}}\)

Đáp án : B

Phương pháp giải :

Dựa vào quy tắc chia hai lũy thừa cùng cơ số \({a^m}:{a^n} = {a^{m - n}}\,\,\,\left( {a \ne 0;m \ge n} \right)\)

Lời giải chi tiết :

Với \(x \ne 0\) thì \({x^8}:{x^2} = {x^{8 - 2}} = {x^6}\)

Câu 7 :

6+6+6+6 bằng

  • A.
    6
  • B.
    6.2
  • C.
    6.4
  • D.
    64

Đáp án : C

Phương pháp giải :

Đếm số các số 6 trong tổng.

Sử dụng kết quả: \(a.b = a + a + ... + a\) (Có b số hạng)

Kí hiệu của phép nhân là \(a \times b\) hoặc \(a.b\)

Lời giải chi tiết :

Tổng trên có 4 số 6 nên 6+6+6+6=6.4

Câu 8 :

Sau khi phân tích 45, 150 ra các thừa số nguyên tố. Tất cả các thừa số chung của hai số này là:

  • A.

    2 và 3

  • B.

    2 và 5

  • C.

    3 và 5

  • D.

    5

Đáp án : C

Phương pháp giải :

Phân tích các số 45, 150 ra tích các thừa số nguyên tố.

Xác định các thừa số nguyên tố của 45 và 150.

Chọn ra các thừa số chung.

Lời giải chi tiết :

45 = 3 2 .5  có hai thừa số nguyên tố là 3 và 5

150 = 2.3.5 2 có 3 thừa số nguyên tố là 2, 3 và 5.

Các thừa số chung là 3 và 5.

Câu 9 :

Các số có tổng … chia hết cho 3 thì chia hết cho 3 và chỉ những số đó mới chia hết cho 3.

  • A.

    các chữ số

  • B.

    tổng các chữ số

  • C.

    các số

  • D.

    chữ số tận cùng

Đáp án : A

Lời giải chi tiết :

Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3 và chỉ những số đó mới chia hết cho 3.

Câu 10 :

Tính \(\left( {368 + 764} \right) - \left( {363 + 759} \right)\), ta được

  • A.

    \(10\)

  • B.

    \(20\)

  • C.

    \(30\)

  • D.

    \(100\)

Đáp án : A

Phương pháp giải :

Ta tính từng ngoặc rồi trừ kết quả với nhau.

Lời giải chi tiết :

Ta có \(\left( {368 + 764} \right) - \left( {363 + 759} \right)\)\( = 1132 - 1122 = 10.\)

Câu 11 :

Viết tập hợp sau bằng cách liệt kê các phần tử: \(A = \left\{ {a \in \mathbb{N}^*\left| {a < 5} \right.} \right\}\)

  • A.

    \(A = \left\{ {0;1;2;3;4} \right\}\)

  • B.

    \(A = \left\{ {0,1,2,3,4,5} \right\}\)

  • C.

    \(A = \left\{ {1;2;3;4;5} \right\}\)

  • D.

    \(A = \left\{ {1;2;3;4} \right\}\)

Đáp án : D

Phương pháp giải :

Tìm các số tự nhiên nhỏ hơn 5 và khác 0.

\(\mathbb{N}^*\) là tập hợp các số tự nhiên khác 0.

Lời giải chi tiết :

Các số tự nhiên nhỏ hơn 5 là 0;1;2;3;4

\(a \in \mathbb{N}^*\) nên a khác 0, do đó các phần tử của $A$ là $1;2;3;4$.

Vậy \(A = \left\{ {1;2;3;4} \right\}\)

Câu 12 :

Dạng tổng quát của số tự nhiên chia cho \(5\) dư \(2\) là

  • A.

    \(2k + 5\,\left( {k \in N} \right)\)

  • B.

    \(5k + 2\,\left( {k \in N} \right)\)

  • C.

    \(2k\,\left( {k \in N} \right)\)

  • D.

    \(5k + 4\,\left( {k \in N} \right)\)

Đáp án : B

Phương pháp giải :

Số tự nhiên \(a\) chia cho \(b\) được thương \(q\) và  dư $r$ có dạng \(a = b.q + r.\)

Lời giải chi tiết :

Dạng tổng quát của số tự nhiên chia cho \(5\) dư \(2\) là \(a = 5k + 2\,\left( {k \in N} \right).\)

Câu 13 :

Cho \(\overline {1a52} \) chia hết cho 9. Số thay thế cho \(a\) có thể là

  • A.
    1
  • B.
    2
  • C.
    3
  • D.
    5

Đáp án : A

Phương pháp giải :

Tìm điều kiện của \(a\).

Tính tổng các chữ số trong \(\overline {1a52} \)

Tìm \(a\) để tổng đó chia hết cho 9.

Lời giải chi tiết :

Tổng các chữ số của \(\overline {1a52} \) là \(1 + a + 5 + 2 = a + 8\) để số \(\overline {1a52} \) chia hết cho 9 thì \(a + 8\) phải chia hết cho 9.

Do a là các số tự nhiên từ 0 đến 9 nên

\(\begin{array}{l}0 + 8 \le a + 8 \le 9 + 8\\ \Rightarrow 8 \le a + 8 \le 17\end{array}\)

Số chia hết cho 9 từ 8 đến 17 chỉ có đúng một số 9, do đó \(a + 8 = 9 \Rightarrow a = 1\)

Vậy số thay thế cho a chỉ có thể là 1

Câu 14 :

Chọn khẳng định đúng:

  • A.

    Mọi số tự nhiên đều có ước chung với nhau.

  • B.

    Mọi số tự nhiên đều có ước là $0$  .

  • C.

    Số nguyên tố chỉ có đúng $1$ ước là chính nó.

  • D.

    Hai số nguyên tố khác nhau thì không có ước chung.

Đáp án : A

Phương pháp giải :

- Áp dụng kiến thức:

Mọi số tự nhiên đều có ước là $1$.

Số nguyên tố có $2$ ước là $1$  và chính nó.

Mọi số nguyên tố khác nhau đều có ước chung duy nhất là $1$.

Lời giải chi tiết :

A. Đáp án này đúng vì mọi số tự nhiên đều có ước chung là $1$.

B. Đáp án này sai, vì $0$ không là ước của $1$ số nào cả.

C. Đáp án này sai, vì số nguyên tố có $2$ ước là $1$ và chính nó.

D. Đáp án này sai, vì $2$ số nguyên tố có ước chung là $1$.

Câu 15 :

Chọn khẳng định đúng:

  • A.

    Mọi số tự nhiên đều có ước chung với nhau.

  • B.

    Mọi số tự nhiên đều có ước là 0

  • C.

    Số nguyên tố chỉ có đúng $1$ ước là chính nó.

  • D.

    Hai số nguyên tố khác nhau thì không có ước chung

Đáp án : A

Phương pháp giải :

- Áp dụng kiến thức:

Mọi số tự nhiên đều có ước là $1$.

Số nguyên tố có $2$ ước là $1$  và chính nó.

Mọi số nguyên tố khác nhau đều có ước chung duy nhất là $1$.

Lời giải chi tiết :

A. Đáp án này đúng vì mọi số tự nhiên đều có ước chung là $1$

B. Đáp án này sai, vì $0$ không là ước của $1$ số nào cả.

C. Đáp án này sai, vì số nguyên tố có $2$ ước là $1$ và chính nó.

D. Đáp án này sai, vì $2$ số nguyên tố có ước chung là $1$.

Câu 16 :

Số tự nhiên \(a\) chia cho \(65\) dư \(10.\) Khi đó số tự nhiên \(a\)

  • A.

    Chia cho \(5\) dư \(1.\)

  • B.

    Chia cho \(5\) dư \(4.\)

  • C.

    Chia cho \(5\) dư \(3.\)

  • D.

    Chia hết cho \(5.\)

Đáp án : D

Phương pháp giải :

Biểu diễn số tự nhiên \(a\) theo thương và số dư. Từ đó áp dụng: nếu các số của một tổng cùng chia hết cho một số thì tổng chia hết cho số đó.

Lời giải chi tiết :

Vì số tự nhiên \(a\) chia cho \(65\) dư \(10\) nên ta có \(a = 65q + 10\,\,\left( {q \in N} \right)\)

Mà \(65 \vdots 5\) và \(10 \vdots 5\) nên \(a = 65q + 10\,\)chia hết cho \(5.\)

Câu 17 :

Tìm $BCNN\left( {38,76} \right)$

  • A.

    $2888$

  • B.

    $37$

  • C.

    $76$

  • D.

    $144$

Đáp án : C

Phương pháp giải :

- Sử dụng: nếu \(a \vdots b\) thì \(BCNN\left( {a;b} \right) = a\)

Lời giải chi tiết :

Ta có \(76 \vdots 38\) nên \(BCNN\left( {38;76} \right) = 76.\)

Câu 18 :

Tích \(25.9676.4\) bằng với

  • A.

    \(1000.9676\)

  • B.

    \(9676 + 100\)

  • C.

    \(9676.100\)

  • D.

    \(9676.10\)

Đáp án : C

Phương pháp giải :

Áp dụng tính chất giao hoán của phép nhân để nhân các số thích hợp

Lời giải chi tiết :

Ta có \(25.9676.4\)\( = 9676.25.4 = 9676.100\)

Câu 19 :

Cho \(a \vdots m\) và \(b \vdots m\) và  \(c \vdots m\) với m là số tự nhiên khác 0. Các số a,b,c là số tự nhiên tùy ý.

Khẳng định nào sau đây chưa đúng?

(Xét trong tập số tự nhiên, số bị trừ phải lớn hơn hoặc bằng số trừ)

  • A.

    \(\left( {a + b} \right) \vdots m\)

  • B.

    \(\left( {a - b} \right) \vdots m\)

  • C.

    \(\left( {a + b + c} \right) \vdots m\)

  • D.

    \(\left( {b + c} \right) \vdots m\)

Đáp án : B

Phương pháp giải :

Tính chất 1 : Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó.

\(a \vdots m\) và \(b \vdots m\) \( \Rightarrow \left( {a + b} \right) \vdots m\)

\(a \vdots m\) và \(b \vdots m\) \( \Rightarrow \left( {a - b} \right) \vdots m\)    với \(\left( {a \ge b} \right)\)

\(a \vdots m;b \vdots m;c \vdots m \Rightarrow \left( {a + b + c} \right) \vdots m\)

Lời giải chi tiết :

\(\left( {a - b} \right) \vdots m\) sai vì thiếu điều kiện \(a \ge b\)

Câu 20 :

Cho \(\overline {17*} \) chia hết cho 2. Số thay thế cho * có thể là

  • A.
    1
  • B.
    2
  • C.
    3
  • D.
    5

Đáp án : B

Phương pháp giải :

Vị trí của * là chữ số tận cùng.

Các số có chữ số tận cùng là số chẵn \(\left( {0,{\rm{ }}2,{\rm{ }}4,{\rm{ }}6,{\rm{ }}8} \right)\) thì chia hết cho 2 và chỉ những số đó mới chia hết cho 2.

Lời giải chi tiết :

Vì * là chữ số tận cùng của \(\overline {17*} \) nên * chỉ có thể là 0;2;4;6;8.

Vậy số 2 là số cần tìm.

Câu 21 :

$BCNN(9;24)$ là bao nhiêu?

  • A.

    $54$

  • B.

    $18$

  • C.

    $72$

  • D.

    $36$

Đáp án : C

Phương pháp giải :

Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.

Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng.

Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.

Lời giải chi tiết :

Ta có:

$\begin{array}{l}9 = {3^2};24 = {2^3}.3\\ \Rightarrow BCNN\left( {9;24} \right) = {2^3}{.3^2} = 8.9 = 72\end{array}$

Câu 22 :

Tính: \(1 + 12.3.5\)

  • A.

    181

  • B.

    195

  • C.

    180

  • D.

    15

Đáp án : A

Phương pháp giải :

Thực hiện theo quy tắc:

N hân và chia \( \to \) cộng và trừ.

Lời giải chi tiết :

\(1 + 12.3.5 = 1+\left( {12.3} \right).5 = 1 + 36.5 = 1 + 180 = 181\)

Câu 23 :

Có bao nhiêu số có ba chữ số là bội chung của a và b, biết rằng BCNN(a,b)=300.

  • A.

    1

  • B.

    2

  • C.

    3

  • D.

    300

Đáp án : C

Phương pháp giải :

- Bội chung của hai số a và b là bội của BCNN(a,b)

- Lấy BCNN(a,b) nhân với các số 1,2,3.

Lời giải chi tiết :

BCNN(a,b) = 300

BC(a,b) là bội của 300.

=> Tất cả các số có 3 chữ số là bội chung của a và b là: 300, 600, 900

Vậy có tất cả 3 số có ba chữ số là bội của a và b.

Câu 24 :

Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?

  • A.

    \(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)

  • B.

    \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

  • C.

    \(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)

  • D.

    \(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)

Đáp án : B

Lời giải chi tiết :

Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)

Câu 25 :

Một ước nguyên tố của 91 là

  • A.

    1

  • B.

    2

  • C.

    3

  • D.

    7

Đáp án : D

Phương pháp giải :

Ước nguyên tố của số a là một ước của a và ước đó là số nguyên tố.

Lời giải chi tiết :

91 có tổng các chữ số bằng 10 không chia hết cho 3 nên 3 không là ước nguyên tố của 91

91 có chữ số tận cùng là 1 nên 91 không chia hết cho 2, do đó 2 không là ước nguyên tố.

Một ước số nguyên tố của 91 là: 7.

Câu 26 :

Tích \(10.10.10.100\) được viết dưới dạng lũy thừa gọn nhất là

  • A.

    \({10^5}\)

  • B.

    \({10^4}\)

  • C.

    \({100^2}\)

  • D.

    \({20^5}\)

Đáp án : A

Phương pháp giải :

+ Tách \(100 = 10.10\)

+ Viết dưới dạng lũy thừa với cơ số $10.$

Lời giải chi tiết :

Ta có \(10.10.10.100\)\( = 10.10.10.10.10 = {10^5}\)

Câu 27 :

Hệ Mặt Trời gồm có Mặt Trời ở trung tâm và 8 thiên thể quanh quanh Mặt Trời gọi là các hành tinh. Đó là sao Thủy, Sao Kim, Trái Đất, Sao Hỏa, Sao Mộc, Sao Thổ, Sao Thiên Vương, Sao Hải Vương.

Cho S là tập hợp các hành tinh của Hệ Mặt Trời. Khẳng định nào sau đây đúng ?

  • A.

    S là tập hợp có 8 phần tử.

  • B.

    Sao Thủy không thuộc S.

  • C.

    S là tập hợp có 9 phần tử.

  • D.

    Mặt Trời là một phần tử của S.

Đáp án : A

Phương pháp giải :

+) Các hành tinh của Hệ Mặt Trời là sao Thủy, Sao Kim, Trái Đất, Sao Hỏa, Sao Mộc, Sao Thổ, Sao Thiên Vương, Sao Hải Vương.

+) Mỗi một hành tinh là một phần tử của tập hợp.

+) Số hành tinh là số phần tử của S.

Lời giải chi tiết :

Thổ, Sao Thiên Vương, Sao Hải Vương

Hệ Mặt Trời có 8 hành tinh nên S có 8 phần tử => A đúng, C sai

Sao Thủy là một hành tinh của Hệ Mặt Trời => B sai.

Mặt Trời không là hành tinh nên Mặt Trời không là một phần tử của S => D sai

Câu 28 :

Khẳng định nào là sai:

  • A.

    $0$  và $1$  không là số nguyên tố cũng không phải hợp số.

  • B.

    Cho số $a > 1$, $a$  có $2$  ước thì $a$  là hợp số.

  • C.

    $2$ là số nguyên tố chẵn duy nhất.

  • D.

    Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó.

Đáp án : B

Phương pháp giải :

Áp dụng định nghĩa:

+ Hợp số là một số tự nhiên có thể biểu diễn thành tích của hai số tự nhiên khác nhỏ hơn nó. Một định nghĩa khác tương đương: hợp số là số chia hết cho các số khác ngoài 1 và chính nó.

+ Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó.

Lời giải chi tiết :

+) Số $a$ phải là số tự nhiên  lớn hơn \(1\) và có nhiều hơn $2$ ước thì $a$ mới là hợp số nên B sai.

+) $1$ là số tự nhiên chỉ có $1$ ước là $1$ nên không là số nguyên tố và $0$ là số tự nhiên nhỏ hơn $1$ nên không là số nguyên tố. Lại có $0$ và $1$ đều không là hợp số do đó A đúng.

+) Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó nên D đúng và suy ra $2$ là số nguyên tố  chẵn duy nhất nên C đúng.

Câu 29 :

Tập hợp \(P\) gồm các số tự nhiên lớn hơn \(50\) và không lớn hơn \(57\). Kết luận nào sau đây là sai?

  • A.

    \(55 \in P\)

  • B.

    \(57 \in P\)

  • C.

    \(50 \notin P\)

  • D.

    \(58 \in P\)

Đáp án : D

Phương pháp giải :

+ Viết tập hợp \(P\) dưới dạng liệt kê.

+ Chỉ ra các phần tử thuộc \(P\) và không thuộc \(P\) để chọn đáp án.

Lời giải chi tiết :

Các số tự nhiên lớn hơn \(50\) và không lớn hơn \(57\) là \(51;52;53;54;55;56;57\)

Nên \(P = \left\{ {51;52;53;54;55;56;57} \right\}\)

Do đó \(58 \notin P\) nên D sai.

Câu 30 :

\(5269 + 2017\,\,...\,\,2017 + 5962\).

Dấu thích hợp điền vào chỗ chấm là:

A. \( < \)

B. \( > \)

C. \( = \)

Đáp án

A. \( < \)

Phương pháp giải :

Áp dụng tính chất giao hoán của phép cộng: Khi đổi chỗ các số hạng trong một tổng thì tổng đó không thay đổi:

\(a + b = b + a\)

Lời giải chi tiết :

Ta có: \(5269 + 2017\, = \,2017 + 5269\)

Lại có \(5269 < 5962\) nên \(2017 + 5269 < 2017 + 5692\)

Do đó \(5269 + 2017 < 2017 + 5962\).

Câu 31 :

Kết quả của phép tính \(90 - 85 + 80 - 75 + 70 - 65 + 60 - 55 + 50 - 45\) là

  • A.

    \(25\)

  • B.

    \(20\)

  • C.

    \(30\)

  • D.

    \(35\)

Đáp án : A

Phương pháp giải :

Thực hiện phép trừ hai số hạng liên tiếp trong dãy phép tính rồi cộng các kết quả với nhau.

Lời giải chi tiết :

Ta có

\(90 - 85 + 80 - 75 + 70 - 65 + 60 - 55 + 50 - 45\)

\(= (90 - 85) + (80 - 75) + (70 - 65) + (60 - 55) + (50 - 45)\)

\( = 5 + 5 + 5 + 5 + 5 = 10 + 10 + 5 = 25.\)

Câu 32 :

Tổng \(1 + 3 + 5 + 7 + ... + 95 + 97\) là

  • A.

    Số có chữ số tận cùng là \(7.\)

  • B.

    Số có chữ số tận cùng là \(2.\)

  • C.

    Số có chữ số tận cùng là \(3.\)

  • D.

    Số có chữ số tận cùng là \(1.\)

Đáp án : D

Phương pháp giải :

+ Tính số các số tự nhiên lẻ liên tiếp từ \(1\) đến \(97\) bằng công thức  (số cuối-số đầu):2+1

+ Tổng các số tự nhiên lẻ liên tiếp từ \(1\) đến \(97\) được tính bằng công thức

(số cuối+số đầu). số các số hạng :2

Lời giải chi tiết :

Số các số tự nhiên lẻ liên tiếp từ \(1\) đến \(97\) là \(\left( {97 - 1} \right):2 + 1 = 49\) số

Do đó \(1 + 3 + 5 + 7 + ... + 95 + 97\)\( = \left( {97 + 1} \right).49:2 = 2401.\)

Vậy tổng cần tìm có chữ số tận cùng là \(1.\)

Câu 33 :

Kết quả của phép tính \(\left( {158.129 - 158.39} \right):180\) có chữ số tận cùng là

  • A.

    \(8\)

  • B.

    \(79\)

  • C.

    \(9\)

  • D.

    \(5\)

Đáp án : C

Phương pháp giải :

- Tính trong ngoặc bằng cách sử dụng \(ab - ac = a.\left( {b - c} \right).\)

- Thực hiện phép chia để tìm kết quả.

Lời giải chi tiết :

Ta có \(\left( {158.129 - 158.39} \right):180\)\( = 158.\left( {129 - 39} \right):180 = 158.90:180\)\( = 79.2.90:180 = 79.180:180 = 79.\)

Vậy kết quả của phép tính có chữ số tận cùng là \(9.\)

Câu 34 :

Với $a,b$ là các số tự nhiên, nếu \(10a + b\) chia hết cho $13$  thì \(a + 4b\) chia hết cho số nào dưới đây?

  • A.

    \(3\)

  • B.

    \(5\)

  • C.

    \(26\)

  • D.

    \(13\)

Đáp án : D

Phương pháp giải :

Nhân \(a + 4b\) với 10, biến đổi rồi chứng minh dựa vào TC1:  Nếu số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó.

Lời giải chi tiết :

Xét \(10.\left( {a + 4.b} \right) = 10.a + 40.b \)\(= \left( {10.a + b} \right) + 39.b\) .

Vì \(\left( {10.a + b} \right)\,\, \vdots \,\,13\) và \(39b\,\, \vdots \,\,13\) nên \(10.\left( {a + 4.b} \right)\,\, \vdots \,\,13\) .

Do $10$ không chia hết cho $13$ nên suy ra \(\left( {a + 4.b} \right)\,\, \vdots \,\,13\) .

Vậy nếu \(10a + b\) chia hết cho $13$ thì \(a + 4b\) chia hết cho $13.$

Câu 35 :

Cho $5$ số $0;1;3;6;7.$ Có bao nhiêu số tự nhiên có ba chữ số và chia hết cho 3 được lập từ các số trên mà các chữ số không lặp lại.

  • A.

    $1$

  • B.

    $4$

  • C.

    $3$

  • D.

    $2$

Đáp án : B

Phương pháp giải :

Sử dụng dấu hiệu chia hết cho $3:$ Các số có tổng chia hết cho $3$ thì chia hết cho $3.$

Lời giải chi tiết :

Trong $5$ số $0;1;3;6;7$ chỉ có \(0 + 3 + 6 = 9\,\, \vdots \,\,3\) nên các số cần tìm được lập bởi ba số $0,3,6$, chúng là 360; 306; 630; 603. Vậy ta lập được 4 số thỏa mãn.

Câu 36 :

Cho tập hợp $X$ là ước của $35$ và lớn hơn $5$. Cho tập $Y$ là bội của $8$ và nhỏ hơn $50$.

Gọi $M$ là giao của $2$  tập hợp $X$ và $Y$, tập hợp $M$ có bao nhiêu phần tử?

  • A.

    $2$

  • B.

    $1$

  • C.

    $0$

  • D.

    $3$

Đáp án : C

Phương pháp giải :

- Áp dụng kiến thức ước (bội) của $1$ số, liệt kê tập hợp các ước (bội) số đó.

- So sánh với yêu cầu của đề bài, các ước (bội) lớn hơn (hay nhỏ hơn), để tìm ra tập hợp cuối cùng.

- Dựa vào kiến thức tập hợp để tìm ra tập hợp giao của $2$ tập hợp vừa tìm được.

Lời giải chi tiết :

Ư$(35) = \{ 1,5,7,35\} ;$Ư$(35) > 5 \Rightarrow X = \{ 7,35\} $

$B(8) = \{ 0,8,16,24,32,40,48,56,...\} $

$B(8) < 50 \Rightarrow Y = \{ 0,8,16,24,32,40,48\} $

Vì:

$X = \{ 7,35\} $

$Y = \{ 0,8,16,24,32,40,48\} $

$ \Rightarrow M = X \cap Y = \emptyset $  nên tập M không có phần tử nào.

Câu 37 :

Cho $36 = {2^2}{.3^2};60 = {2^2}.3.5;72 = {2^3}{.3^2}$. Ta có $ƯCLN(36;60;72)$là:

  • A.

    ${2^3}.3.5$

  • B.

    ${2^2}{.3^2}$

  • C.

    ${2^2}.3$

  • D.

    $3.5$

Đáp án : C

Phương pháp giải :

Áp dụng phương pháp tìm ƯCLN: phân tích các số ra thừa số nguyên tố, chọn các thừa số chung. Mỗi thừa số lấy số mũ nhỏ nhất, tích của các số đó là ƯCLN

Lời giải chi tiết :

$36 = {2^2}{.3^2};60 = {2^2}.3.5;72 = {2^3}{.3^2}$

Ta số thừa số chung là $2;3$

Số mũ nhỏ nhất của $2$ là $2$; số mũ nhỏ nhất của $3$  là $1$

Vậy $ƯCLN\left( {36;60;72} \right) = {2^2}.3$.

Câu 38 :

Cho \(A = 3 + {3^2} + {3^3} + ... + {3^{100}}\) . Tìm số tự nhiên \(n\) biết rằng \(2A + 3 = {3^n}.\)

  • A.

    \(n = 99\)

  • B.

    \(n = 100\)

  • C.

    \(n = 101\)

  • D.

    \(n = 102\)

Đáp án : C

Phương pháp giải :

+ Tính \(3A\) sau đó tính \(2A = 3A - A\)

+ Sử dụng điều kiện ở đề bài để đưa về dạng hai lũy thừa cùng cơ số. Cho hai số mũ bằng nhau ta tìm được \(n.\)

Lời giải chi tiết :

Ta có \(A = 3 + {3^2} + {3^3} + ... + {3^{100}}\,\,\left( 1 \right)\) nên \(3A = {3^2} + {3^3} + {3^4} + ... + {3^{100}} + {3^{101}}\,\,\left( 2 \right)\)

Lấy \(\left( 2 \right)\) trừ \(\left( 1 \right)\) ta được \(2A = {3^{101}} - 3\) do đó \(2A + 3 = {3^{101}}\) mà theo đề bài \(2A + 3 = {3^n}\)

Suy ra \({3^n} = {3^{101}}\) nên \(n = 101.\)

Câu 39 :

Cho  2 số: $14n + 3$ và $21n + 4$ với $n$ là số tự nhiên, chọn đáp án đúng.

  • A.

    Hai số trên có hai ước chung

  • B.

    Hai số trên có ba ước chung

  • C.

    Hai số trên là hai số nguyên tố cùng nhau

  • D.

    Hai số trên chỉ có một ước chung là 3.

Đáp án : C

Phương pháp giải :

Dựa vào kiến thức 2 số nguyên tố cùng nhau là 2 số nguyên tố có ước chung lớn nhất là 1.

Áp dụng tính chất chia hết của 1 hiệu: Nếu $a \vdots c;b \vdots c \Rightarrow \left( {a - b} \right) \vdots c$

Lời giải chi tiết :

Gọi \(d = UCLN\left( {14n + 3;21n + 4} \right)\) ta có:

\(14n + 3\, \vdots \,d\) và \(21n + 4 \, \vdots \, d\)

\(3\left( {14n + 3} \right) \vdots \, d\) và \(2\left( {21n + 4} \right) \vdots d\)

\(42n + 9 \,\vdots \, d\) và \(42n + 8 \, \vdots \, d\)

\(\left( {42n + 9} \right) - \left( {42n + 8} \right) \vdots d\)

Suy ra \(1 \vdots d\)

\(d = 1\)

Vậy \(ƯCLN\left( {14n + 3;21n + 4} \right) = 1\) hay hai số đó là hai số nguyên tố cùng nhau.

Câu 40 :

Tìm số \(\overline {xy} \) biết \(\overline {xy} .\overline {xyx}  = \overline {xyxy} \)

  • A.

    \(10\)

  • B.

    \(11\)

  • C.

    \(12\)

  • D.

    \(13\)

Đáp án : A

Phương pháp giải :

Sử dụng mối quan hệ giữa các hàng trăm, hàng chục hàng đơn vị khi phân tích một số trong hệ thập phân

Lời giải chi tiết :

Ta có \(\overline {xy} .\overline {xyx}  = \overline {xyxy} \)

\(\overline {xy} .\overline {xyx}  = \overline {xy} .100 + \overline {xy} \)

\(\overline {xy} .\overline {xyx}  = \overline {xy} \left( {100 + 1} \right)\)

\(\overline {xy} .\overline {xyx}  = \overline {xy} .101\)

Suy ra \(\overline {xyx}  = 101\) nên \(x = 1;y = 0\)

Vậy \(\overline {xy}  = 10.\)


Cùng chủ đề:

Đề kiểm tra 15 phút Toán 6 Kết nối tri thức - Đề số 1
Đề kiểm tra 15 phút Toán 6 Kết nối tri thức - Đề số 2
Đề kiểm tra 15 phút Toán 6 Kết nối tri thức - Đề số 3
Đề kiểm tra 15 phút Toán 6 Kết nối tri thức - Đề số 4
Đề kiểm tra 15 phút Toán 6 Kết nối tri thức - Đề số 5
Đề kiểm tra giữa học kì 1 Toán 6 Kết nối tri thức - Đề số 1
Đề kiểm tra giữa học kì 1 Toán 6 Kết nối tri thức - Đề số 2
Đề kiểm tra giữa học kì 1 Toán 6 Kết nối tri thức - Đề số 3
Đề kiểm tra giữa học kì 1 Toán 6 Kết nối tri thức - Đề số 4
Đề kiểm tra giữa học kì 1 Toán 6 Kết nối tri thức - Đề số 5
Đề kiểm tra học kì 1 Toán 6 Kết nối tri thức - Đề số 1