Đề kiểm tra học kì 1 Toán 6 Chân trời sáng tạo - Đề số 2
Đề bài
Cho \(B = \left\{ {2;3;4;5} \right\}\). Chọn câu sai.
-
A.
\(2 \in B\)
-
B.
\(5 \in B\)
-
C.
\(1 \notin B\)
-
D.
\(6 \in B\)
-
A.
\( - 46718 < - 46812\)
-
B.
\( - 67523 < - 66712\)
-
C.
\( - 12 > 7\)
-
D.
\( - 123 < - 126\)
Chọn câu sai .
-
A.
\({a^m}.{a^n} = {a^{m + n}}\)
-
B.
\({a^m}:{a^n} = {a^{m - n}}\) với $ m \ge n$ và $ a\ne 0$
-
C.
\({a^0} = 1\)
-
D.
\({a^1} = 0\)
Một nhóm bạn thân gồm 6 người đi đến một quán trà chanh và mua các loại nước uống và các loại nước uống được ghi lại trong bảng sau:
Nước cam |
Nước dưa hấu |
Nước chanh |
Nước dứa |
Nước cam |
Nước dưa hấu |
Có bao nhiêu loại nước được mua?
-
A.
5
-
B.
4
-
C.
3
-
D.
2
Thay dấu * để được số nguyên tố $\overline {*1} $:
-
A.
$2$
-
B.
$8$
-
C.
$5$
-
D.
$4$
BCNN(10, 15, 30) là:
-
A.
10
-
B.
15
-
C.
30
-
D.
60
-
A.
\(a \ge 0\)
-
B.
\(a > 0\)
-
C.
\(a < 0\)
-
D.
\(a \le 0\)
Cho bảng số liệu về các loại quả ưa thích của các bạn trong lớp 6A2 như sau
Các loại quả |
Cam |
Xoài |
Chuối |
Khế |
Ổi |
Số bạn thích |
8 |
9 |
6 |
4 |
3 |
Điền số mấy ở trên cột Khế?
-
A.
9
-
B.
8
-
C.
6
-
D.
4
Cho tập hợp $X = \left\{ {2;4} \right\};Y = \left\{ {1;3;7} \right\}\;$ Tập hợp $M$ gồm các phần tử mà mỗi phần tử là tích của một phần tử thuộc $X$ và một phần tử thuộc $Y$ là:
-
A.
$M = \left\{ {2;6;14;4;12;28} \right\}\;$
-
B.
$M = \left\{ {2;6;14;4;12} \right\}\;$
-
C.
$M = \left\{ {1;2;3;4;6} \right\}\;$
-
D.
$M = \left\{ {2;6;14;12} \right\}\;$
Giá trị của biểu thức \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\) bằng
-
A.
$140$
-
B.
$60$
-
C.
$80$
-
D.
$40$
Có bao nhiêu số có hai chữ số là bội của \(9\)?
-
A.
$9$ số
-
B.
$11$ số
-
C.
$10$ số
-
D.
$12$ số
Cho tam giác đều \(MNP\) có \(MN = 5\,cm\), khẳng định nào sau đây đúng?
-
A.
\(NP = 3\,cm\)
-
B.
\(MP = 4\,cm\)
-
C.
\(NP = 6\,cm\)
-
D.
\(MP = 5\,cm\)
Cho \(a \vdots m\) và \(b \vdots m\) và \(c \vdots m\) với m là số tự nhiên khác 0. Các số a,b,c là số tự nhiên tùy ý.
Khẳng định nào sau đây chưa đúng?
(Xét trong tập số tự nhiên, số bị trừ phải lớn hơn hoặc bằng số trừ)
-
A.
\(\left( {a + b} \right) \vdots m\)
-
B.
\(\left( {a - b} \right) \vdots m\)
-
C.
\(\left( {a + b + c} \right) \vdots m\)
-
D.
\(\left( {b + c} \right) \vdots m\)
Khẳng định nào là sai:
-
A.
$0$ và $1$ không là số nguyên tố cũng không phải hợp số.
-
B.
Cho số $a > 1$, $a$ có $2$ ước thì $a$ là hợp số.
-
C.
$2$ là số nguyên tố chẵn duy nhất.
-
D.
Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó.
Kết quả của phép tính \(\left( { + 25} \right) + \left( { + 15} \right)\) là
-
A.
$40$
-
B.
$10$
-
C.
$50$
-
D.
$30$
Tính diện tích mảnh vườn được tạo bởi 1 hình vuông và 1 hình chữ nhật như hình vẽ:
-
A.
4 m 2
-
B.
16 m 2
-
C.
20 m 2
-
D.
24 m 2
Trong các hình sau, hình nào là hình thoi?
Số tự nhiên liền sau số \(2018\) là
-
A.
\(2016\)
-
B.
\(2017\)
-
C.
\(2019\)
-
D.
\(2020\)
Trong các số sau, số nào vừa chia hết cho 2 vừa chia hết cho 5?
-
A.
550
-
B.
9724
-
C.
7905
-
D.
5628
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Số nguyên âm biểu thị năm sự kiện: Thế vận hội đầu tiên diễn ra năm \(776\) trước công nguyên là:
-
A.
\(776\)
-
B.
\( - 776\)
-
C.
\( + 776\)
-
D.
\( - 767\)
Điểm thi của Nam và Khải được biểu diễn trong biểu đồ cột kép ở hình sau:
Khẳng định nào sau đây đúng ?
-
A.
Điểm Toán của Nam cao hơn Khải
-
B.
Điểm cả 3 môn của Khải cao hơn Nam
-
C.
Điểm Ngữ văn của Nam cao hơn Khải
-
D.
Điểm Ngữ văn của Khải cao hơn Nam
Phát biểu nào sau đây đúng ?
-
A.
Ước của một số nguyên âm là các số nguyên âm
-
B.
Ước của một số nguyên dương là một số nguyên dương.
-
C.
Nếu \(a\) là bội của \(b\) thì \( - a\) cũng là bội của \(b\) .
-
D.
Nếu \(b\) là ước của \(a\) thì \( - b\) là bội của \(a\) .
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?
-
A.
\(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)
-
B.
\(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
-
C.
\(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)
-
D.
\(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)
Trong các hình sau, hình nào là hình bình hành?
A.
B.
C.
D.
Điền số hoặc chữ thích hợp vào ô trống:
\(a + b + 91 = (a + b) +\)
\(=\)
\(+ (b + 91)\)
Cho hình bình hành \(ABCD\), cặp cạnh song song với nhau là:
-
A.
AB và AD
-
B.
AD và DC
-
C.
BC và AD
-
D.
DC và BC
Cho hình thang có độ dài hai cạnh bên là 5 cm và 7 cm, đáy lớn gấp đôi đáy nhỏ, biết độ dài đáy nhỏ là 6 cm. Chu vi hình thang là:
-
A.
36 cm
-
B.
18 cm
-
C.
30 cm
-
D.
24 cm
Tìm số tự nhiên \(\overline {145*} \) chia hết cho cả \(3\) và \(5.\)
-
A.
\(1454\)
-
B.
\(1450\)
-
C.
\(1455\)
-
D.
\(1452\)
Tìm số tự nhiên $a, b$ thỏa mãn $\overline {2a4b} $ chia hết cho các số $2; 3; 5$ và $9.$
-
A.
$a = 3;b = 0$
-
B.
$b = 3;a = 0$
-
C.
$a = 1;b = 2$
-
D.
$a = 9;b = 0$
Cho $25 - \left( {x + 15} \right) = - 415 - \left( { - 215 - 415} \right)$ thì \(x\) bằng
-
A.
\( - 205\)
-
B.
\(175\)
-
C.
\( - 175\)
-
D.
\(205\)
Tìm tổng các số nguyên $n$ biết: \(\left( {n + 3} \right)\left( {n - 2} \right) < 0\) .
-
A.
\( - 3\)
-
B.
\( - 2\)
-
C.
\( 0\)
-
D.
\(4\)
Cần bao nhiêu viên gạch hình vuông cạnh 50 cm để lát kín căn phòng có nền là hình vuông có cạnh 12 m?
-
A.
240 viên
-
B.
144 viên
-
C.
24 viên
-
D.
576 viên
Số học sinh vắng trong ngày của các lớp khối 6 trường THCS A là
6A1 |
6A2 |
6A3 |
6A4 |
6A5 |
6A6 |
6A7 |
6A8 |
2 |
4 |
5 |
1 |
3 |
2 |
2 |
1 |
Có bao nhiêu lớp có số học sinh vắng ít nhất
-
A.
4
-
B.
5
-
C.
1
-
D.
2
Biểu đồ tranh dưới đây cho biết số học sinh nữ của các lớp khối 6 trường THCS Hoàng Việt.
Em hãy quan sát biểu đồ tranh ở trên và chọn đáp án đúng
-
A.
Lớp 6A1 có ít học sinh nữ nhất
-
B.
Lớp 6A4 có nhiều học sinh nữ hơn lớp 6A5
-
C.
Lớp 6A6 có 20 học sinh nữ.
-
D.
Tổng số học sinh nữ của các lớp khối 6 là 120 học sinh
Cho \(x;\,y \in \mathbb{Z}\). Nếu \(5x + 46y\) chia hết cho $16$ thì \(x + 6y\) chia hết cho
-
A.
\(6\)
-
B.
\(46\)
-
C.
\(16\)
-
D.
\(5\)
Tìm giá trị lớn nhất của biểu thức: \(C = - {\left( {x - 5} \right)^2} + 10\)
-
A.
\( - 10\)
-
B.
\(5\)
-
C.
\(0\)
-
D.
\(10\)
Tìm $x,$ biết $100 - x$ là số nguyên âm lớn nhất có hai chữ số.
-
A.
$90$
-
B.
$199$
-
C.
$110$
-
D.
$ - 10$
Tìm số \(\overline {xy} \) biết \(\overline {xy} .\overline {xyx} = \overline {xyxy} \)
-
A.
\(10\)
-
B.
\(11\)
-
C.
\(12\)
-
D.
\(13\)
Tổng \(S = 1 + \left( { - 3} \right) + 5 + \left( { - 7} \right) + ... + 2001 + \left( { - 2003} \right)\) bằng
-
A.
$ - 1002$
-
B.
$1005$
-
C.
$ - 1000$
-
D.
$ - 1004$
Lời giải và đáp án
Cho \(B = \left\{ {2;3;4;5} \right\}\). Chọn câu sai.
-
A.
\(2 \in B\)
-
B.
\(5 \in B\)
-
C.
\(1 \notin B\)
-
D.
\(6 \in B\)
Đáp án : D
Áp dụng cách sử dụng kí hiệu \( \in \):
Ví dụ:
+) \(2 \in A\) đọc là \(2\) thuộc A hoặc \(2\) là phần tử của A.
+) \(6 \notin A\) đọc là \(6\) không thuộc A hoặc \(6\) không là phần tử của A.
\(2\) và \(5\) là các phần tử của $B$ nên A, B đúng.
\(1\) không là phần tử của $B$ nên C đúng.
Ta thấy \(6\) không là phần tử của tập hợp \(B\) nên \(6 \notin B.\) Do đó D sai.
-
A.
\( - 46718 < - 46812\)
-
B.
\( - 67523 < - 66712\)
-
C.
\( - 12 > 7\)
-
D.
\( - 123 < - 126\)
Đáp án : B
- Số nguyên âm luôn nhỏ hơn số nguyên dương.
- Để so sánh hai số nguyên âm, ta làm như sau:
Bước 1: Bỏ dấu “-” trước cả hai số âm.
Bước 2: Trong hai số nguyên dương nhận được, số nào nhỏ hơn thì số nguyên âm ban đầu (tương ứng) sẽ lớn hơn.
Do \(67523 > 66712\) nên \( - 67523 < - 66712\).
Khẳng định đúng là: B
Chọn câu sai .
-
A.
\({a^m}.{a^n} = {a^{m + n}}\)
-
B.
\({a^m}:{a^n} = {a^{m - n}}\) với $ m \ge n$ và $ a\ne 0$
-
C.
\({a^0} = 1\)
-
D.
\({a^1} = 0\)
Đáp án : D
Sử dụng các công thức chia hai lũy thừa cùng cơ số; nhân hai lũy thừa cùng cơ số và các qui ước
Ta có với $ a,m,n \in N$ thì
+ \({a^m}.{a^n} = {a^{m + n}}\) nên A đúng
+ \({a^m}:{a^n} = {a^{m - n}}\) với $ m \ge n$ và $ a\ne 0$ nên B đúng
+ $a^0=1$ nên C đúng.
+ \({a^1} = a\) nên D sai.
Một nhóm bạn thân gồm 6 người đi đến một quán trà chanh và mua các loại nước uống và các loại nước uống được ghi lại trong bảng sau:
Nước cam |
Nước dưa hấu |
Nước chanh |
Nước dứa |
Nước cam |
Nước dưa hấu |
Có bao nhiêu loại nước được mua?
-
A.
5
-
B.
4
-
C.
3
-
D.
2
Đáp án : B
Liệt kê các loại nước.
Có 4 loại nước được mua: Nước cam, nước dưa hấu, nước chanh, nước dứa.
Thay dấu * để được số nguyên tố $\overline {*1} $:
-
A.
$2$
-
B.
$8$
-
C.
$5$
-
D.
$4$
Đáp án : D
+ Dấu * có thể nhận các giá trị \(\left\{ {2;8;5;4} \right\}\)
+ Dùng định nghĩa số nguyên tố để tìm ra số nguyên tố
Dấu * có thể nhận các giá trị \(\left\{ {2;8;5;4} \right\}\)
+) Ta có \(21\) có các ước \(1;3;7;21\) nên \(21\) là hợp số. Loại A
+) \(81\) có các ước \(1;3;9;27;81\) nên \(81\) là hợp số. Loại B
+) \(51\) có các ước \(1;3;17;51\) nên \(51\) là hợp số. Loại C
+) \(41\) chỉ có hai ước là \(1;41\) nên \(41\) là số nguyên tố.
BCNN(10, 15, 30) là:
-
A.
10
-
B.
15
-
C.
30
-
D.
60
Đáp án : C
Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của các số đã cho chính là số lớn nhất ấy.
Ta có: 30 là bội của 10 và 15
=> BCNN(10, 15, 30) = 30.
-
A.
\(a \ge 0\)
-
B.
\(a > 0\)
-
C.
\(a < 0\)
-
D.
\(a \le 0\)
Đáp án : B
Cho bảng số liệu về các loại quả ưa thích của các bạn trong lớp 6A2 như sau
Các loại quả |
Cam |
Xoài |
Chuối |
Khế |
Ổi |
Số bạn thích |
8 |
9 |
6 |
4 |
3 |
Điền số mấy ở trên cột Khế?
-
A.
9
-
B.
8
-
C.
6
-
D.
4
Đáp án : D
Số trên cột Khế là số bạn thích khế.
Số bạn thích khế là 4 nên ta điền 4 trên cột Khế.
Cho tập hợp $X = \left\{ {2;4} \right\};Y = \left\{ {1;3;7} \right\}\;$ Tập hợp $M$ gồm các phần tử mà mỗi phần tử là tích của một phần tử thuộc $X$ và một phần tử thuộc $Y$ là:
-
A.
$M = \left\{ {2;6;14;4;12;28} \right\}\;$
-
B.
$M = \left\{ {2;6;14;4;12} \right\}\;$
-
C.
$M = \left\{ {1;2;3;4;6} \right\}\;$
-
D.
$M = \left\{ {2;6;14;12} \right\}\;$
Đáp án : A
Tìm các phần tử thuộc tập hợp $M$ bằng cách lấy mỗi phần tử thuộc tập $X$ nhân lần lượt với từng phần tử thuộc tập $Y$.
$X = \left\{ {2;4} \right\};Y = \left\{ {1;3;7} \right\}\;$ Lấy mỗi phần tử thuộc tập hợp $X$ nhân lần lượt với từng phần tử thuộc tập hợp $Y$ ta được: \(2.1 = 2;2.3 = 6;2.7 = 14;4.1 = 4;4.3 = 12;4.7 = 28\) Vậy $M = \left\{ {2;6;14;4;12;28} \right\}\;$
Giá trị của biểu thức \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\) bằng
-
A.
$140$
-
B.
$60$
-
C.
$80$
-
D.
$40$
Đáp án : D
Thực hiện phép tính trong ngoặc tròn rồi đến ngoặc vuông. Sau đó là phép nhân và phép trừ.
Ta có \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\)
\( = 2\left[ {\left( {195 + 5} \right):8 + 195} \right] - 400\)
\( = 2\left[ {200:8 + 195} \right] - 400\)
\( = 2\left( {25 + 195} \right) - 400\)
\( = 2.220 - 400\)
\( = 440 - 400\)
\( = 40\)
Có bao nhiêu số có hai chữ số là bội của \(9\)?
-
A.
$9$ số
-
B.
$11$ số
-
C.
$10$ số
-
D.
$12$ số
Đáp án : C
+) \(B\left( 9 \right) = \left\{ {9.m|m \in N} \right\}\)
+) Kết hợp điều kiện $x$ là số có hai chữ số để tìm $x$
Số có hai chữ số là số lớn hơn hoặc bằng $10$ và nhỏ hơn hoặc bằng $99$.
Gọi $A = \left\{ {x \in B\left( 9 \right)|10 \le x \le 99} \right\}$
Suy ra \(A = \left\{ {18;27;36;...;\,99} \right\}\)
Số phần tử của A là \(\left( {99 - 18} \right):9 + 1 = 10\) (phần tử)
Vậy có $10$ bội của $9$ là số có hai chữ số.
Cho tam giác đều \(MNP\) có \(MN = 5\,cm\), khẳng định nào sau đây đúng?
-
A.
\(NP = 3\,cm\)
-
B.
\(MP = 4\,cm\)
-
C.
\(NP = 6\,cm\)
-
D.
\(MP = 5\,cm\)
Đáp án : D
Trong tam giác đều ba cạnh bằng nhau mà \(MN = 5\,cm\) nên ta có: \(MN = NP = MP = 5\,cm\)
=> Chọn D
Cho \(a \vdots m\) và \(b \vdots m\) và \(c \vdots m\) với m là số tự nhiên khác 0. Các số a,b,c là số tự nhiên tùy ý.
Khẳng định nào sau đây chưa đúng?
(Xét trong tập số tự nhiên, số bị trừ phải lớn hơn hoặc bằng số trừ)
-
A.
\(\left( {a + b} \right) \vdots m\)
-
B.
\(\left( {a - b} \right) \vdots m\)
-
C.
\(\left( {a + b + c} \right) \vdots m\)
-
D.
\(\left( {b + c} \right) \vdots m\)
Đáp án : B
Tính chất 1 : Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó.
\(a \vdots m\) và \(b \vdots m\) \( \Rightarrow \left( {a + b} \right) \vdots m\)
\(a \vdots m\) và \(b \vdots m\) \( \Rightarrow \left( {a - b} \right) \vdots m\) với \(\left( {a \ge b} \right)\)
\(a \vdots m;b \vdots m;c \vdots m \Rightarrow \left( {a + b + c} \right) \vdots m\)
\(\left( {a - b} \right) \vdots m\) sai vì thiếu điều kiện \(a \ge b\)
Khẳng định nào là sai:
-
A.
$0$ và $1$ không là số nguyên tố cũng không phải hợp số.
-
B.
Cho số $a > 1$, $a$ có $2$ ước thì $a$ là hợp số.
-
C.
$2$ là số nguyên tố chẵn duy nhất.
-
D.
Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó.
Đáp án : B
Áp dụng định nghĩa:
+ Hợp số là một số tự nhiên có thể biểu diễn thành tích của hai số tự nhiên khác nhỏ hơn nó. Một định nghĩa khác tương đương: hợp số là số chia hết cho các số khác ngoài 1 và chính nó.
+ Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó.
+) Số $a$ phải là số tự nhiên lớn hơn \(1\) và có nhiều hơn $2$ ước thì $a$ mới là hợp số nên B sai.
+) $1$ là số tự nhiên chỉ có $1$ ước là $1$ nên không là số nguyên tố và $0$ là số tự nhiên nhỏ hơn $1$ nên không là số nguyên tố. Lại có $0$ và $1$ đều không là hợp số do đó A đúng.
+) Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó nên D đúng và suy ra $2$ là số nguyên tố chẵn duy nhất nên C đúng.
Kết quả của phép tính \(\left( { + 25} \right) + \left( { + 15} \right)\) là
-
A.
$40$
-
B.
$10$
-
C.
$50$
-
D.
$30$
Đáp án : A
Cộng hai số nguyên dương chính là cộng hai số tự nhiên.
Ta có \(\left( { + 25} \right) + \left( { + 15} \right) = 25 + 15 = 40.\)
Tính diện tích mảnh vườn được tạo bởi 1 hình vuông và 1 hình chữ nhật như hình vẽ:
-
A.
4 m 2
-
B.
16 m 2
-
C.
20 m 2
-
D.
24 m 2
Đáp án : C
Diện tích mảnh vườn = Diện tích phần đất hình vuông + Diện tích phần đất hình chữ nhật.
+ Diện tích hình vuông = Cạnh . Cạnh
+ Diện tích hình chữ nhật = Chiều dài . chiều rộng
Diện tích phần đất hình vuông là: \({2^2} = 4\left( {{m^2}} \right)\)
Diện tích phần đất hình chữ nhật là: \(8.2 = 16\left( {{m^2}} \right)\)
Diện tích mảnh vườn là: \(4 + 16 = 20\,\left( {{m^2}} \right)\)
Trong các hình sau, hình nào là hình thoi?
Quan sát các hình vẽ và áp dụng tính chất: hình thoi có hai cặp cạnh đối diện song song và bốn cạnh bằng nhau.
Quan sát các hình đã cho ta thấy hình thứ nhất và thứ hai từ trên xuống là hình thoi.
Hình thứ ba là hình thang và hình thứ tư là hình bình hành.
Số tự nhiên liền sau số \(2018\) là
-
A.
\(2016\)
-
B.
\(2017\)
-
C.
\(2019\)
-
D.
\(2020\)
Đáp án : C
+ Hai số tự nhiên liên tiếp hơn kém nhau 1 đơn vị nên số tự nhiên liền sau hơn số tự nhiên liền trước nó là \(1\) đơn vị.
Số tự nhiên liền sau số \(2018\) là số \(2018 + 1 = 2019.\)
Trong các số sau, số nào vừa chia hết cho 2 vừa chia hết cho 5?
-
A.
550
-
B.
9724
-
C.
7905
-
D.
5628
Đáp án : A
Sử dụng dấu hiệu chia hết cho 2: Các số có chữ số tận cùng là 0,2,4,6,8 thì chia hết cho 2 và chỉ những số đó chia hết cho 2.
Dấu hiệu chia hết cho 5: Các chữ số có tận cùng là 0 hoặc 5 thì chia hết cho 5 và chỉ những số đó chia hết cho 5.
Tìm số thỏa mãn cả 2 dấu hiệu trên.
550 có chữ số tận cùng là 0.
Số có chữ số tận cùng là 0 thì chia hết cho 2 và chia hết cho 5.
Vậy 550 vừa chia hết cho 2 vừa chia hết cho 5
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Đáp án : C
Đặt tính rồi tính.
Đếm số các phép chia có dư.
Vậy có 3 phép chia có dư
Số nguyên âm biểu thị năm sự kiện: Thế vận hội đầu tiên diễn ra năm \(776\) trước công nguyên là:
-
A.
\(776\)
-
B.
\( - 776\)
-
C.
\( + 776\)
-
D.
\( - 767\)
Đáp án : B
Số nguyên âm biểu thị năm \(a\) trước công nguyên là: \( - a\) .
Thế vận hội đầu tiên diễn ra năm \(776\) trước công nguyên tức là nó diễn ra vào năm \( - 776\)
Điểm thi của Nam và Khải được biểu diễn trong biểu đồ cột kép ở hình sau:
Khẳng định nào sau đây đúng ?
-
A.
Điểm Toán của Nam cao hơn Khải
-
B.
Điểm cả 3 môn của Khải cao hơn Nam
-
C.
Điểm Ngữ văn của Nam cao hơn Khải
-
D.
Điểm Ngữ văn của Khải cao hơn Nam
Đáp án : C
- Lý thuyết về đọc biểu đồ tranh
- Cột màu vàng là điểm của Nam, màu xanh là điểm của Khải.
- Kiểm tra từng đáp án:
Điểm toán của Nam thấp hơn Khải => A sai.
Điểm Ngữ văn của Nam cao hơn Khải. Tức là điểm Ngữ văn của Khải thấp hơn Nam nên điểm 3 môn của Khải cao hơn Nam là sai
=> B sai, C đúng và D sai.
Phát biểu nào sau đây đúng ?
-
A.
Ước của một số nguyên âm là các số nguyên âm
-
B.
Ước của một số nguyên dương là một số nguyên dương.
-
C.
Nếu \(a\) là bội của \(b\) thì \( - a\) cũng là bội của \(b\) .
-
D.
Nếu \(b\) là ước của \(a\) thì \( - b\) là bội của \(a\) .
Đáp án : C
Cho \(a,b \in \mathbb{Z}\) . Nếu \(a \vdots b\) thì ta nói \(a\) là bội của \(b\) và \(b\) là ước của \(a\) .
Ước của một số nguyên âm bao gồm cả số nguyên âm và nguyên dương => A, B sai
Nếu \(b\) là ước của \(a\) thì \( - b\) cũng là ước của \(a\) => D sai
Nếu \(a\) là bội của \(b\) thì \( - a\) cũng là bội của \(b\) => C đúng
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?
-
A.
\(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)
-
B.
\(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
-
C.
\(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)
-
D.
\(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)
Đáp án : B
Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
Trong các hình sau, hình nào là hình bình hành?
A.
B.
C.
D.
C.
Quan sát các hình vẽ và áp dụng tính chất: hình bình hành có hai cặp cạnh đối diện song song và bằng nhau.
Quan sát các hình đã cho ta thấy hình A là hình tròn; hình B là hình thang, hình D là tứ giác ; hình C có hai cặp cạnh đối diện song song và bằng nhau nên hình C là hình bình hành.
Vậy trong các hình đã cho, hình C là hình bình hành.
Điền số hoặc chữ thích hợp vào ô trống:
\(a + b + 91 = (a + b) +\)
\(=\)
\(+ (b + 91)\)
\(a + b + 91 = (a + b) +\)
\(=\)
\(+ (b + 91)\)
Áp dụng công thức: $a + b + c{\rm{ }} = {\rm{ }}\left( {a + b} \right) + c{\rm{ }} = {\rm{ }}a + \left( {b + c} \right)$
Ta có: \(a + b + 91 =\left( {a + b} \right) +91 =a + \left( {b + 91} \right)\)
Vậy đáp án đúng điền vào ô trống theo thứ tự từ trái sang phải là \(91\,;\,\,a\).
Cho hình bình hành \(ABCD\), cặp cạnh song song với nhau là:
-
A.
AB và AD
-
B.
AD và DC
-
C.
BC và AD
-
D.
DC và BC
Đáp án : C
Trong hình bình hành hai cặp cạnh đối diện song song với nhau.
Vì trong hình bình hành hai cặp cạnh đối diện song song với nhau nên BC song song với AD
=> C đúng
Cho hình thang có độ dài hai cạnh bên là 5 cm và 7 cm, đáy lớn gấp đôi đáy nhỏ, biết độ dài đáy nhỏ là 6 cm. Chu vi hình thang là:
-
A.
36 cm
-
B.
18 cm
-
C.
30 cm
-
D.
24 cm
Đáp án : C
- Tính độ dài đáy lớn.
- Chu vi của hình thang bằng tổng độ dài các cạnh của hình thang đó.
Độ dài đáy lớn là: \(6.2 = 12\) (cm)
Chu vi hình thang là: \(5 + 7 + 6 + 12 = 30\) (cm)
Tìm số tự nhiên \(\overline {145*} \) chia hết cho cả \(3\) và \(5.\)
-
A.
\(1454\)
-
B.
\(1450\)
-
C.
\(1455\)
-
D.
\(1452\)
Đáp án : C
+ Các số chia hết cho \(5\) có chữ số tận cùng là \(0\) hoặc \(5.\)
+ Các số chia hết cho \(3\) có tổng các chữ số chia hết cho \(3.\)
Từ đó lập luận để tìm các số thỏa mãn.
Vì \(\overline {145*} \) chia hết cho \(5\) nên \(*\) có thể bằng \(0\) hoặc \(5.\)
+ Nếu \(*\) bằng \(0\) thì ta được số \(1450\) có \(1 + 4 + 5 + 0 = 10\not \vdots 3\) nên loại
+ Nếu \(*\) bằng \(5\) thì ta được số \(1455\) có \(1 + 4 + 5 + 5 = 15 \vdots 3\) nên thỏa mãn.
Vậy số cần tìm là \(1455.\)
Tìm số tự nhiên $a, b$ thỏa mãn $\overline {2a4b} $ chia hết cho các số $2; 3; 5$ và $9.$
-
A.
$a = 3;b = 0$
-
B.
$b = 3;a = 0$
-
C.
$a = 1;b = 2$
-
D.
$a = 9;b = 0$
Đáp án : A
Bước 1: Xác định b bằng tính chất: “ Một số chia hết cho $2$ và $5$ thì có chữ số tận cùng bằng $0$” Bước 2: Thay b vào rồi tính tổng các chữ số của $\overline {2a4b} $ Để $\overline {2a4b} $ chia hết cho $3$ và $9$ thì tổng các chữ số phải chia hết cho $9$ Thử lần lượt các giá trị $a = 0,1,2,...,9$ vào xem giá trị nào thích hợp
Ta có: Để $\overline {2a4b} $ chia hết cho $2$ và $5$ thì $b = 0\;$ Thay $b = 0\;$ vào $\overline {2a4b} $ ta được $\overline {2a40} $ Tổng các chữ số là: \(2 + a + 4 + 0 = a + 6\) Thử lần lượt các giá trị $a = 0,1,2,...,9$ Ta thấy với \(a = 3\) thì tổng các chữ số của $\overline {2a40} = 2340$ là: \(6 + 3 = 9\, \vdots \,9\)
Nên \(2340\) chia hết cho $3$ và $9$.
Vậy với \(a = 3;b = 0\) thì \(\overline {2a4b} \) chia hết cho \(2;3;5\) và \(9.\)
Cho $25 - \left( {x + 15} \right) = - 415 - \left( { - 215 - 415} \right)$ thì \(x\) bằng
-
A.
\( - 205\)
-
B.
\(175\)
-
C.
\( - 175\)
-
D.
\(205\)
Đáp án : A
Bước 1: Tính vế phải Bước 2: Tìm $x + 15$ Bước 3: Tìm $x$
$\begin{array}{l}25 - \left( {x + 15} \right) = - 415 - \left( { - 215 - 415} \right)\\25 - \left( {x + 15} \right) = 215\\x + 15 = 25 - 215\\x + 15 = - 190\\x = - 190 - 15\\x = - 205\end{array}$
Tìm tổng các số nguyên $n$ biết: \(\left( {n + 3} \right)\left( {n - 2} \right) < 0\) .
-
A.
\( - 3\)
-
B.
\( - 2\)
-
C.
\( 0\)
-
D.
\(4\)
Đáp án : B
+ Ta thấy tích hai số là một số âm khi hai số đó trái dấu.
+ Từ đó chia hai trường hợp:
TH1: \(n + 3 > 0\) và \(n - 2 < 0\)
TH2: \(n + 3 < 0\) và \(n - 2 > 0\)
Từ các trường hợp ta tìm giá trị của n.
Vì \(\left( {n + 3} \right)\left( {n - 2} \right) < 0\) nên suy ra \(n + 3\) và \(n - 2\) là hai số trái dấu.
TH1: \(\left\{ \begin{array}{l}n + 3 > 0\\n - 2 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n > 0 - 3\\n < 0 + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n > - 3\\n < 2\end{array} \right. \Leftrightarrow - 3 < n < 2 \Rightarrow n \in \left\{ { - 2;\, - 1;\;\,0;\;\,1} \right\}\) vì \(n \in Z.\)
TH2: \(\left\{ \begin{array}{l}n + 3 < 0\\n - 2 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n < 0 - 3\\n > 0 + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n < - 3\\n > 2\end{array} \right.\) suy ra không có giá trị nào của n thỏa mãn.
Vậy \(n \in \left\{ { - 2;\, - 1;\,\;0;\;\,1} \right\}\).
Tổng các số nguyên thỏa mãn là \(\left( { - 2} \right) + \left( { - 1} \right) + 0 + 1 = - 2.\)
Cần bao nhiêu viên gạch hình vuông cạnh 50 cm để lát kín căn phòng có nền là hình vuông có cạnh 12 m?
-
A.
240 viên
-
B.
144 viên
-
C.
24 viên
-
D.
576 viên
Đáp án : D
- Đổi các dữ kiện ra cùng đơn vị đo
- Tính diện tích hình vuông
- Tính diện tích căn phòng
- Số viên gạch = Diện tích căn phòng : Diện tích một viên gạch
Đổi 50 cm = 0,5 m.
Diện tích một viên gạch là: \(0,5.0,5 = 0,25\,\,({m^2})\)
Diện tích căn phòng là: \(12.12 = 144\,\,({m^2})\)
Số viên gạch để lát kín căn phòng là: \(144:0,25 = 576\) (viên)
Số học sinh vắng trong ngày của các lớp khối 6 trường THCS A là
6A1 |
6A2 |
6A3 |
6A4 |
6A5 |
6A6 |
6A7 |
6A8 |
2 |
4 |
5 |
1 |
3 |
2 |
2 |
1 |
Có bao nhiêu lớp có số học sinh vắng ít nhất
-
A.
4
-
B.
5
-
C.
1
-
D.
2
Đáp án : D
- Tìm số bé nhất trong hàng thứ hai
- Tìm số lớp có số lượng học sinh vắng vừa tìm được.
Số học sinh vắng ít nhất trong một lớp là 1
Lớp có số học sinh vắng ít nhất là lớp 6A4 , 6A8
Vậy có 2 lớp có số học sinh vắng ít nhất.
Biểu đồ tranh dưới đây cho biết số học sinh nữ của các lớp khối 6 trường THCS Hoàng Việt.
Em hãy quan sát biểu đồ tranh ở trên và chọn đáp án đúng
-
A.
Lớp 6A1 có ít học sinh nữ nhất
-
B.
Lớp 6A4 có nhiều học sinh nữ hơn lớp 6A5
-
C.
Lớp 6A6 có 20 học sinh nữ.
-
D.
Tổng số học sinh nữ của các lớp khối 6 là 120 học sinh
Đáp án : C
Đếm số biểu tượng để tính số HS nữ của mỗi lớp (mỗi biểu tượng ứng với 10 HS nữ).
Số học sinh nữ.
Lớp 6A1: 2.10 = 20 học sinh nữ
Lớp 6A2: 3.10 = 30 học sinh nữ
Lớp 6A3: 1.10 = 10 học sinh nữ
Lớp 6A4: 2.10 = 20 học sinh nữ
Lớp 6A5: 3.10 = 30 học sinh nữ
Lớp 6A6: 2.10 = 20 học sinh nữ
Lớp 6A3 có ít học sinh nữ nhất (10 học sinh) => A sai
Lớp 6A5 có 30 học sinh nữ, lớp 6A4 có 20 học sinh nữ => Lớp 6A4 có ít học sinh nữ
hơn lớp 6A5. => B sai.
Lớp 6A6 có 20 học sinh nữ. => C đúng.
Tổng số học sinh nữ của các lớp khối 6 là: 20 + 30 + 10 + 20 + 30 + 20 = 130 học sinh.
=> D sai.
Cho \(x;\,y \in \mathbb{Z}\). Nếu \(5x + 46y\) chia hết cho $16$ thì \(x + 6y\) chia hết cho
-
A.
\(6\)
-
B.
\(46\)
-
C.
\(16\)
-
D.
\(5\)
Đáp án : C
+ Biến đổi để tách \(5x + 46y\) thành tổng của hai số, trong đó một số chia hết cho $16$ và một số chứa nhân tử \(x + 6y\)
+ Sử dụng tính chất chia hết trên tập hợp các số nguyên để chứng minh.
Ta có:
\(\begin{array}{l}5x + 46y = 5x + 30y + 16y\\ = \left( {5x + 30y} \right) + 16y\\ = 5\left( {x + 6y} \right) + 16y\end{array}\)
Vì \(5x + 46y\) chia hết cho $16$ và $16y$ chia hết cho $16$ nên suy ra \(5\left( {x + 6y} \right)\) chia hết cho $16.$
Mà $5$ không chia hết cho $16$ nên suy ra \(x + 6y\) chia hết cho $16$
Vậy nếu \(5x + 46y\) chia hết cho $16$ thì \(x + 6y\) cũng chia hết cho $16.$
Tìm giá trị lớn nhất của biểu thức: \(C = - {\left( {x - 5} \right)^2} + 10\)
-
A.
\( - 10\)
-
B.
\(5\)
-
C.
\(0\)
-
D.
\(10\)
Đáp án : D
Áp dụng tính chất \({A^2} \ge 0\) với mọi A và tính chất \(m - {A^2} \le m\) để tìm giá trị lớn nhất của biểu thức.
\(C = - {\left( {x - 5} \right)^2} + 10\)
Ta có: \({\left( {x - 5} \right)^2} \ge 0,\,\forall x \in \mathbb{Z} \Rightarrow - {\left( {x - 5} \right)^2} \le 0,\;\,\forall x \in \mathbb{Z}\)\( \Rightarrow - {\left( {x - 5} \right)^2} + 10 \le 10,\,\;\forall x \in \mathbb{Z}\)
Suy ra \(C \le 10\,\,\forall x \in \mathbb{Z}\) .
\(C = 10\) khi \({\left( {x - 5} \right)^2} = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\)
Vậy giá trị lớn nhất của C là 10 khi \(x = 5\) .
Tìm $x,$ biết $100 - x$ là số nguyên âm lớn nhất có hai chữ số.
-
A.
$90$
-
B.
$199$
-
C.
$110$
-
D.
$ - 10$
Đáp án : C
Bước 1: Tìm số nguyên âm lớn nhất có hai chữ số Bước 2: Tìm $x.$
+ Số nguyên âm lớn nhất có hai chữ số là \( - 10\)
+ Ta có:
\(\begin{array}{l}100 - x = - 10\\x = 100 - \left( { - 10} \right)\\x = 110\end{array}\)
Tìm số \(\overline {xy} \) biết \(\overline {xy} .\overline {xyx} = \overline {xyxy} \)
-
A.
\(10\)
-
B.
\(11\)
-
C.
\(12\)
-
D.
\(13\)
Đáp án : A
Sử dụng mối quan hệ giữa các hàng trăm, hàng chục hàng đơn vị khi phân tích một số trong hệ thập phân
Ta có \(\overline {xy} .\overline {xyx} = \overline {xyxy} \)
\(\overline {xy} .\overline {xyx} = \overline {xy} .100 + \overline {xy} \)
\(\overline {xy} .\overline {xyx} = \overline {xy} \left( {100 + 1} \right)\)
\(\overline {xy} .\overline {xyx} = \overline {xy} .101\)
Suy ra \(\overline {xyx} = 101\) nên \(x = 1;y = 0\)
Vậy \(\overline {xy} = 10.\)
Tổng \(S = 1 + \left( { - 3} \right) + 5 + \left( { - 7} \right) + ... + 2001 + \left( { - 2003} \right)\) bằng
-
A.
$ - 1002$
-
B.
$1005$
-
C.
$ - 1000$
-
D.
$ - 1004$
Đáp án : A
Nhóm các số hạng thích hợp thành các tổng bằng nhau rồi tính tổng \(S\)
\(S = 1 + \left( { - 3} \right) + 5 + \left( { - 7} \right) + ... + 2001 + \left( { - 2003} \right)\)
\( = \left[ {1 + \left( { - 3} \right)} \right] + \left[ {5 + \left( { - 7} \right)} \right] + ... + \left[ {2001 + \left( { - 2003} \right)} \right]\)
\( = \underbrace {\left( { - 2} \right) + \left( { - 2} \right) + ... + \left( { - 2} \right)}_{501\,{\rm{số}}\,{\rm{hạng}}}\) \( = \left( { - 2} \right).501 = - 1002\)
(Vì dãy số \(1;\left( { - 3} \right);5;\left( { - 7} \right);...;2003\) có \(\left( {2003 - 1} \right):2 + 1 = 1002\) số hạng nên khi nhóm hai số hạng vào một ngoặc thì ta thu được $1002:2=501$ dấu ngoặc. Hay có $501$ số $(-2)$)