Phép dời hình nào có thể biến hình ngôi sao A thành hình ngôi sao B?
Quan sát các điểm được vẽ trên mặt phẳng tọa độ (Hình 1).
Cho vectơ \(\overrightarrow u \) và đường thẳng d. A và M là hai điểm bất kì trên d. Gọi A’ và M’ lần lượt là ảnh của A và M qua phép tịnh tiến \({{\rm{T}}_{{\rm{\vec u}}}}\).
Cho phép tịnh tiến \({T_{\vec v}}\) và phép tịnh tiến \({T_{\vec v}}\).
Cho đường tròn (O) và hai điểm A, B. Khi điểm M thay đổi trên đường tròn (O) thì điểm M’ thay đổi trên đường nào để \(\overrightarrow {MM'} + \overrightarrow {MA} = \overrightarrow {MB} \)?
Cho phép tịnh tiến \({T_{\vec u}}\) trong đó \(\vec u = \left( {3;5} \right)\)
Cho hai điểm B, C cố định trên đường tròn \(\left( {O;{\rm{ }}R} \right)\) và một điểm A thay đổi trên đường tròn đó
Trong Hình 9, tìm các vectơ \(\vec u\) và \(\vec v\) sao cho phép tịnh tiến \({T_{\vec u}}\)biến hình mũi tên (A) thành hình mũi tên (B) và phép tịnh tiến \({T_{\vec v}}\) biến hình mũi tên (A) thành hình mũi tên (C).