Giải bài 2 trang 96 sách bài tập toán 12 - Chân trời sáng tạo
Bảng sau cho biết thời gian hoàn thành cự li đi bộ 10000 m của một số học sinh: Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Làm tròn kết quả đến hàng phần mười.)
Đề bài
Bảng sau cho biết thời gian hoàn thành cự li đi bộ 10000 m của một số học sinh:
Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Làm tròn kết quả đến hàng phần mười.)
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).
‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:
Tứ phân vị thứ \(k\) được xác định như sau: \({Q_k} = {u_m} + \frac{{\frac{{kn}}{4} - C}}{{{n_m}}}\left( {{u_{m + 1}} - {u_m}} \right)\)
trong đó:
• \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu;
• \(\left[ {{u_m};{u_{m + 1}}} \right)\) là nhóm chứa tứ phân vị thứ \(k\);
• \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ \(k\);
• \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).
‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).
Lời giải chi tiết
\(n = 5 + 12 + 18 + 24 + 19 = 78\)
Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = 95 - 70 = 25\) (phút).
Gọi \({x_1};{x_2};...;{x_{78}}\) là mẫu số liệu gốc gồm thời gian hoàn thành cự li đi bộ 10000 m của 78 học sinh theo thứ tự không giảm.
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{20}} \in \left[ {80;85} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
\({Q_1} = 80 + \frac{{\frac{{1.78}}{4} - \left( {5 + 12} \right)}}{{18}}\left( {85 - 80} \right) = \frac{{2905}}{{36}}\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{59}} \in \left[ {85;90} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3} = 85 + \frac{{\frac{{3.78}}{4} - \left( {5 + 12 + 18} \right)}}{{24}}\left( {90 - 85} \right) = \frac{{4315}}{{48}}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta Q = {Q_3} - {Q_1} = \frac{{4315}}{{48}} - \frac{{2905}}{{36}} = \frac{{1325}}{{144}} \approx 9,2\) (phút).