Giải bài 3 trang 55 Chuyên đề học tập Toán 10 – Chân trời sáng tạo — Không quảng cáo

Giải chuyên đề học tập Toán lớp 10 Chân trời sáng tạo Bài 2. Hypebol Chuyên đề học tập Toán 10 chân trời sáng


Giải bài 3 trang 55 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Cho đường tròn (C) tâm ({F_1}), bán kính r và một điểm ({F_2}) thỏa mãn ({F_1}{F_2} = 4r).

Đề bài

Cho đường tròn (C) tâm \({F_1}\), bán kính r và một điểm \({F_2}\) thỏa mãn \({F_1}{F_2} = 4r\).

a) Chứng tỏ rằng tâm của các đường tròn đi qua \({F_2}\) và tiếp xúc với \((C)\) nằm trên một đường hypebol (H).

b) Viết phương trình chính tắc và tìm tâm sai của (H).

Lời giải chi tiết

a) Xét đường tròn \((M,R)\) đi qua \({F_2}\) và tiếp xúc với \((C)\)

Ta có: \(M{F_1} = R + r;M{F_2} = R \Rightarrow M{F_1} - M{F_2} = r=2a\)

\( \Rightarrow M \in \) hypebol (H) có \(2c={F_1}{F_2} = 4r\) và \(2a = r\)

b) Ta có: \({b^2} = {a^2} - {c^2} = 4{r^2} - {\left( {\frac{r}{2}} \right)^2} = \frac{{15{r^2}}}{4}\)

Phương trình chính tắc của (H) là \(\frac{{{x^2}}}{{\frac{{{r^2}}}{4}}} - \frac{{{y^2}}}{{\frac{{15{r^2}}}{4}}} = 1\)

Tâm sai \(e = \frac{c}{a} = \frac{{2r}}{{\frac{r}{2}}} = 4\)


Cùng chủ đề:

Giải bài 3 trang 24 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
Giải bài 3 trang 30 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
Giải bài 3 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
Giải bài 3 trang 39 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
Giải bài 3 trang 48 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
Giải bài 3 trang 55 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
Giải bài 3 trang 59 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
Giải bài 3 trang 64 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
Giải bài 3 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
Giải bài 4 trang 13 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
Giải bài 4 trang 21 Chuyên đề học tập Toán 10 – Chân trời sáng tạo