Giải bài 38 trang 60 sách bài tập toán 12 - Cánh diều — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Cánh diều Bài 2. Phương trình đường thẳng - SBT Toán 12 Cánh diều


Giải bài 38 trang 60 sách bài tập toán 12 - Cánh diều

Tính góc giữa hai mặt phẳng (làm tròn kết quả đến hàng đơn vị của độ): (left( {{P_1}} right):5x + 12y - 13z + 14 = 0) và (left( {{P_2}} right):3x + 4y + 5z - 6 = 0).

Đề bài

Tính góc giữa hai mặt phẳng (làm tròn kết quả đến hàng đơn vị của độ):

\(\left( {{P_1}} \right):5x + 12y - 13z + 14 = 0\) và \(\left( {{P_2}} \right):3x + 4y + 5z - 6 = 0\).

Phương pháp giải - Xem chi tiết

Hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {{A_1};{B_1};{C_1}} \right),\)\(\overrightarrow {{n_2}}  = \left( {{A_2};{B_2};{C_2}} \right)\). Khi đó ta có:

\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {{A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2}} \right|}}{{\sqrt {A_1^2 + B_1^2 + C_1^2} .\sqrt {A_2^2 + B_2^2 + C_2^2} }}\).

Lời giải chi tiết

Mặt phẳng \(\left( {{P_1}} \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}}  = \left( {5;12; - 13} \right)\).

Mặt phẳng \(\left( {{P_2}} \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}}  = \left( {3;4;5} \right)\).

Côsin của góc giữa hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) bằng:

\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {5.3 + 12.4 - 13.5} \right|}}{{\sqrt {{5^2} + {{12}^2} + {{\left( { - 13} \right)}^2}} .\sqrt {{3^2} + {4^2} + {5^2}} }} = \frac{1}{{65}}\).

Vậy \(\left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) \approx {89^ \circ }\).


Cùng chủ đề:

Giải bài 37 trang 21 sách bài tập toán 12 - Cánh diều
Giải bài 37 trang 60 sách bài tập toán 12 - Cánh diều
Giải bài 37 trang 77 sách bài tập toán 12 - Cánh diều
Giải bài 38 trang 18 sách bài tập toán 12 - Cánh diều
Giải bài 38 trang 21 sách bài tập toán 12 - Cánh diều
Giải bài 38 trang 60 sách bài tập toán 12 - Cánh diều
Giải bài 38 trang 77 sách bài tập toán 12 - Cánh diều
Giải bài 39 trang 18 sách bài tập toán 12 - Cánh diều
Giải bài 39 trang 21 sách bài tập toán 12 - Cánh diều
Giải bài 39 trang 60 sách bài tập toán 12 - Cánh diều
Giải bài 39 trang 77 sách bài tập toán 12 - Cánh diều