Processing math: 100%

Giải bài 5. 43 trang 38 sách bài tập toán 12 - Kết nối tri thức — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Kết nối tri thức Bài tập cuối chương 5 - SBT Toán 12 Kết nối tri thức


Giải bài 5.43 trang 38 sách bài tập toán 12 - Kết nối tri thức

Trong không gian Oxyz, cho mặt cầu (left( S right):{left( {x - 2} right)^2} + {left( {y + 1} right)^2} + {left( {z - 3} right)^2} = 9) và điểm (Aleft( {2; - 1;1} right)). a) Tìm tâm I và bán kính R của mặt cầu (S). b) Chứng minh rằng điểm A nằm trong mặt cầu (S). c) Viết phương trình mặt phẳng (P) đi qua điểm A sao cho khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (P) là lớn nhất.

Đề bài

Trong không gian Oxyz, cho mặt cầu  (S):(x2)2+(y+1)2+(z3)2=9 và điểm A(2;1;1).

a) Tìm tâm I và bán kính R của mặt cầu (S).

b) Chứng minh rằng điểm A nằm trong mặt cầu (S).

c) Viết phương trình mặt phẳng (P) đi qua điểm A sao cho khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (P) là lớn nhất.

Phương pháp giải - Xem chi tiết

Ý a: Từ phương trình mặt cầu suy ra tâm và bán kính.

Ý b: So sánh IA và bán kính mặt cầu.

Ý c: IA là vectơ pháp tuyến của (P).

Lời giải chi tiết

a) Mặt cầu (S) có tâm I(2;1;3), bán kính R=3.

b) Ta có IA=22=2<3=R. Suy ra điểm A nằm trong mặt cầu (S).

c) Kẻ IH vuông góc với mặt phẳng (P) thì IHIA nên IH lớn nhất khi H trùng với A.

Để khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (P) là lớn nhất thì IH lớn nhất.

Khi đó A là hình chiếu của I trên (P).

Suy ra mặt phẳng (P) có vectơ pháp tuyến IA=(0;0;2).

Phương trình mặt phẳng (P) là 2(z1)=0z1=0.


Cùng chủ đề:

Giải bài 5. 38 trang 37 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 39 trang 37 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 40 trang 37 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 41 trang 37 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 42 trang 38 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 43 trang 38 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 44 trang 38 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 45 trang 38 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 46 trang 38 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 47 trang 39 sách bài tập toán 12 - Kết nối tri thức
Giải bài 5. 48 trang 39 sách bài tập toán 12 - Kết nối tri thức