Giải bài 5.45 trang 38 sách bài tập toán 12 - Kết nối tri thức
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):2x + 2y - z + 8 = 0\) và \(\left( Q \right):2x + 2y - z + 2 = 0\). a) Chứng minh rằng \(\left( P \right)\parallel \left( Q \right)\). b) Tính khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).
Đề bài
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):2x + 2y - z + 8 = 0\) và \(\left( Q \right):2x + 2y - z + 2 = 0\).
a) Chứng minh rằng \(\left( P \right)\parallel \left( Q \right)\).
b) Tính khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).
Phương pháp giải - Xem chi tiết
Ý a: Chứng minh hai vectơ pháp tuyến của hai mặt phẳng cùng phương và một điểm bất kỳ của mặt phẳng này không thuộc mặt phẳng còn lại.
Ý b: Tính khoảng cách của một điểm bất kỳ thuộc mặt phẳng này đến mặt phẳng còn lại.
Lời giải chi tiết
a) Một vectơ pháp tuyến của (P) là \(\overrightarrow {{n_P}} = \left( {2;2; - 1} \right)\), một vectơ pháp tuyến của (Q) là \(\overrightarrow {{n_Q}} = \left( {2;2; - 1} \right)\)
Suy ra \(\overrightarrow {{n_P}} = \overrightarrow {{n_Q}} \). Mà \(8 \ne 2\) do đó \(\left( P \right)\parallel \left( Q \right)\).
b) Ta có điểm \(A\left( {0;0;8} \right)\) thuộc mặt phẳng \(\left( P \right)\).
Khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) là \(d\left( {A,\left( Q \right)} \right) = \frac{{\left| { - 8 + 2} \right|}}{{\sqrt {4 + 4 + 1} }} = 2\).