Giải bài 51 trang 23 sách bài tập toán 12 - Cánh diều — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Cánh diều Bài 3. Đường tiệm cận của đồ thị hàm số - SBT Toán 12 C


Giải bài 51 trang 23 sách bài tập toán 12 - Cánh diều

Đồ thị hàm số nào sau đây nhận đường thẳng (x = - 1) làm tiệm cận đứng? A. (y = frac{{3{rm{x}} - 1}}{{{rm{x}} + 1}}). B. (y = frac{{2{rm{x}} + 1}}{{{rm{x}} - 1}}). C. (y = frac{{ - x + 1}}{{{rm{x}} - 2}}). D. (y = frac{{x + 1}}{{{rm{x}} - 2}}).

Đề bài

Đồ thị hàm số nào sau đây nhận đường thẳng \(x =  - 1\) làm tiệm cận đứng?

A. \(y = \frac{{3{\rm{x}} - 1}}{{{\rm{x}} + 1}}\).

B. \(y = \frac{{2{\rm{x}} + 1}}{{{\rm{x}} - 1}}\).

C. \(y = \frac{{ - x + 1}}{{{\rm{x}} - 2}}\).

D. \(y = \frac{{x + 1}}{{{\rm{x}} - 2}}\).

Phương pháp giải - Xem chi tiết

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn: \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

Lời giải chi tiết

Xét hàm số \(y = \frac{{3{\rm{x}} - 1}}{{{\rm{x}} + 1}}\). Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{3{\rm{x}} - 1}}{{{\rm{x}} + 1}} = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {3 - \frac{4}{{x + 1}}} \right) =  + \infty \\\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{3{\rm{x}} - 1}}{{{\rm{x}} + 1}} = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {3 - \frac{4}{{x + 1}}} \right) =  - \infty \end{array}\)

Vậy \(x =  - 1\) là tiệm cận đứng của đồ thị hàm số \(y = \frac{{3{\rm{x}} - 1}}{{{\rm{x}} + 1}}\).

Chọn A.


Cùng chủ đề:

Giải bài 49 trang 27 sách bài tập toán 12 - Cánh diều
Giải bài 49 trang 66 sách bài tập toán 12 - Cánh diều
Giải bài 50 trang 23 sách bài tập toán 12 - Cánh diều
Giải bài 50 trang 27 sách bài tập toán 12 - Cánh diều
Giải bài 50 trang 66 sách bài tập toán 12 - Cánh diều
Giải bài 51 trang 23 sách bài tập toán 12 - Cánh diều
Giải bài 51 trang 27 sách bài tập toán 12 - Cánh diều
Giải bài 51 trang 66 sách bài tập toán 12 - Cánh diều
Giải bài 52 trang 23 sách bài tập toán 12 - Cánh diều
Giải bài 52 trang 67 sách bài tập toán 12 - Cánh diều
Giải bài 53 trang 23 sách bài tập toán 12 - Cánh diều