Giải bài 53 trang 23 sách bài tập toán 12 - Cánh diều
Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}backslash left{ 1 right}), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Tiệm cận đứng của đồ thị hàm số là đường thẳng: A. (x = 1). B. (x = 2). C. (y = 1). D. (y = 2).
Đề bài
Cho hàm số y=f(x) xác định trên R∖{1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Tiệm cận đứng của đồ thị hàm số là đường thẳng:
A. x=1.
B. x=2.
C. y=1.
D. y=2.
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính lim hoặc \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right), nếu một trong các giới hạn sau thoả mãn:
\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty
thì đường thẳng x = {x_0} là đường tiệm cận đứng.
Lời giải chi tiết
Dựa vào bảng biến thiên ta có: \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = - \infty .
Vậy x = 1 là tiệm cận đứng của đồ thị hàm số đã cho.
Chọn A.