Giải bài 51 trang 27 sách bài tập toán 12 - Cánh diều
Cho hình phẳng giới hạn bởi đồ thị hàm số (y = cos frac{x}{2}), trục hoành và hai đường thẳng (x = 0,x = frac{pi }{2}). Tính thể tích khối tròn xoay tạo thành khi cho hình phẳng đó quay quanh trục (Ox).
Đề bài
Cho hình phẳng giới hạn bởi đồ thị hàm số \(y = \cos \frac{x}{2}\), trục hoành và hai đường thẳng \(x = 0,x = \frac{\pi }{2}\). Tính thể tích khối tròn xoay tạo thành khi cho hình phẳng đó quay quanh trục \(Ox\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức: Tính thể tích khối tròn xoay khi xoay hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) quay quanh trục \(Ox\) là: \(V = \pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}dx} \).
Lời giải chi tiết
Thể tích khối tròn xoay được tính theo công thức:
\(V = \pi \int\limits_0^{\frac{\pi }{2}} {{{\cos }^2}\frac{x}{2}dx} = \pi \int\limits_0^{\frac{\pi }{2}} {\frac{{1 + \cos x}}{2}dx} = \pi \int\limits_0^{\frac{\pi }{2}} {\left( {\frac{1}{2} + \frac{1}{2}\cos x} \right)dx} = \left. {\pi \left( {\frac{1}{2}x + \frac{1}{2}\sin x} \right)} \right|_0^{\frac{\pi }{2}} = \frac{{{\pi ^2} + 2\pi }}{4}\).