Giải bài 52 trang 67 sách bài tập toán 12 - Cánh diều — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Cánh diều Bài 3. Phương trình mặt cầu - SBT Toán 12 Cánh diều


Giải bài 52 trang 67 sách bài tập toán 12 - Cánh diều

Lập phương trình mặt cầu \(\left( S \right)\) trong mỗi trường hợp sau: a) \(\left( S \right)\) có tâm \(I\left( {3; - 4;5} \right)\) bán kính 9. b) \(\left( S \right)\) có tâm \(K\left( { - 4;6;7} \right)\) và đi qua điểm \(H\left( { - 5;4;5} \right)\). c) \(\left( S \right)\) có đường kính \(AB\) với \(A\left( {1;3; - 1} \right)\) và \(B\left( { - 1; - 1; - 5} \right)\).

Đề bài

Lập phương trình mặt cầu \(\left( S \right)\) trong mỗi trường hợp sau:

a) \(\left( S \right)\) có tâm \(I\left( {3; - 4;5} \right)\) bán kính 9.

b) \(\left( S \right)\) có tâm \(K\left( { - 4;6;7} \right)\) và đi qua điểm \(H\left( { - 5;4;5} \right)\).

c) \(\left( S \right)\) có đường kính \(AB\) với \(A\left( {1;3; - 1} \right)\) và \(B\left( { - 1; - 1; - 5} \right)\).

Phương pháp giải - Xem chi tiết

‒ Để viết phương trình mặt cầu, ta tìm tâm và bán kính mặt cầu.

‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Lời giải chi tiết

a) Phương trình của mặt cầu tâm \(I\left( {3; - 4;5} \right)\) bán kính 9 là:

\({\left( {x - 3} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 5} \right)^2} = {9^2}\) hay \({\left( {x - 3} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 5} \right)^2} = 81\).

b) Bán kính của mặt cầu đó bằng:

\(R = KH = \sqrt {{{\left( { - 5 - \left( { - 4} \right)} \right)}^2} + {{\left( {4 - 6} \right)}^2} + {{\left( {5 - 7} \right)}^2}}  = 3\).

Vậy phương trình mặt cầu đó là:

\({\left( {x + 4} \right)^2} + {\left( {y - 6} \right)^2} + {\left( {z - 7} \right)^2} = {3^2}\) hay \({\left( {x + 4} \right)^2} + {\left( {y - 6} \right)^2} + {\left( {z - 7} \right)^2} = 9\).

c) Mặt cầu đường kính \(AB\) có tâm \(I\left( {0;1; - 3} \right)\) là trung điểm của \(AB\).

Bán kính của mặt cầu đó bằng:

\(R = IA = \sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( {3 - 1} \right)}^2} + {{\left( { - 1 - \left( { - 3} \right)} \right)}^2}}  = 3\).

Vậy phương trình mặt cầu đó là:

\({x^2} + {\left( {y - 1} \right)^2} + {\left( {z + 3} \right)^2} = {3^2}\) hay \({x^2} + {\left( {y - 1} \right)^2} + {\left( {z + 3} \right)^2} = 9\).


Cùng chủ đề:

Giải bài 50 trang 66 sách bài tập toán 12 - Cánh diều
Giải bài 51 trang 23 sách bài tập toán 12 - Cánh diều
Giải bài 51 trang 27 sách bài tập toán 12 - Cánh diều
Giải bài 51 trang 66 sách bài tập toán 12 - Cánh diều
Giải bài 52 trang 23 sách bài tập toán 12 - Cánh diều
Giải bài 52 trang 67 sách bài tập toán 12 - Cánh diều
Giải bài 53 trang 23 sách bài tập toán 12 - Cánh diều
Giải bài 53 trang 28 sách bài tập toán 12 - Cánh diều
Giải bài 53 trang 67 sách bài tập toán 12 - Cánh diều
Giải bài 54 trang 24 sách bài tập toán 12 - Cánh diều
Giải bài 54 trang 28 sách bài tập toán 12 - Cánh diều