1. Hàm số liên tục tại 1 điểm
Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}1&{khi\,\,0 \le x \le 1}\\{1 + x}&{khi\,\,1 < x \le 2}\\{5 - x}&{khi\,\,2 < x \le 3}\end{array}} \right.\) có đồ thị như Hình 1.
Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + 1}&{khi\,\,1 < x \le 2}\\k&{khi\,\,x = 1}\end{array}} \right.\).
Cho hai hàm số \(y = f\left( x \right) = \frac{1}{{x - 1}}\) và \(y = g\left( x \right) = \sqrt {4 - x} \).
Cho hai hàm số \(y = f\left( x \right) = \frac{1}{{x - 1}}\) và \(y = g\left( x \right) = \sqrt {4 - x} \).
Xét tính liên tục của hàm số:
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 4}}{{x + 2}}}&{khi\,\,x \ne - 2}\\a&{khi\,\,x = - 2}\end{array}} \right.\).
Xét tính liên tục của các hàm số sau:
Cho hàm số \(f\left( x \right) = 2x - \sin x,g\left( x \right) = \sqrt {x - 1} \).
Một bãi đậu xe ô tô đưa ra giá \(C\left( x \right)\) (đồng) khi thời gian đậu xe là \(x\) (giờ) như sau:
Lực hấp dẫn do Trái Đất tác dụng lên một đơn vị khối lượng ở khoảng cách \(r\) ở tỉnh từ tâm của nó là