Giải toán 12 bài 11 trang 4,5,6 Kết nối tri thức — Không quảng cáo

Toán 12 Kết nối tri thức


Lý thuyết Nguyên hàm

Lý thuyết Nguyên hàm

Câu hỏi mục 1 trang 4,5,6

Nguyên hàm của một số

Câu hỏi mục 2 trang 6,7,8

Tính chất cơ bản của nguyên hàm

Câu hỏi mục 3 trang 8,9,10

Nguyên hàm của một số hàm số thường gặp

Bài 4.1 trang 11

Trong mỗi trường hợp sau, hàm số F(x) có là một nguyên hàm của hàm số f(x) trên khoảng tương ứng không? Vì sao? a) \(F\left( x \right) = x\ln x\) và \(f\left( x \right) = 1 + \ln x\) trên khoảng \(\left( {0; + \infty } \right)\); b) \(F\left( x \right) = {e^{\sin x}}\) và \(f\left( x \right) = {e^{\cos x}}\) trên \(\mathbb{R}\).

Bài 4.2 trang 11

Tìm nguyên hàm của các hàm số sau: a) \(f\left( x \right) = 3{x^2} + 2x - 1\); b) \(f\left( x \right) = {x^3} - x\); c) \(f\left( x \right) = {\left( {2x + 1} \right)^2}\); d) \(f\left( x \right) = {\left( {2x - \frac{1}{x}} \right)^2}\).

Bài 4.3 trang 11

Tìm: a) \(\int {\left( {3\sqrt x + \frac{1}{{\sqrt[3]{x}}}} \right)} dx\); b) \(\int {\sqrt x \left( {7{x^2} - 3} \right)} dx\left( {x > 0} \right)\); c) \(\int {\frac{{{{\left( {2x + 1} \right)}^2}}}{{{x^2}}}} dx\); d) \(\int {\left( {{2^x} + \frac{3}{{{x^2}}}} \right)} dx\).

Bài 4.4 trang 11

Tìm: a) \(\int {\left( {2\cos x - \frac{3}{{{{\sin }^2}x}}} \right)} dx\); b) \(\int {4{{\sin }^2}\frac{x}{2}} dx\); c) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}} dx\); d) \(\int {\left( {x + {{\tan }^2}x} \right)} dx\).

Bài 4.5 trang 11

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {0; + \infty } \right)\). Biết rằng \(f'\left( x \right) = 2x + \frac{1}{{{x^2}}}\) với mọi \(x \in \left( {0; + \infty } \right)\) và \(f\left( 1 \right) = 1\). Tính giá trị f(4).

Bài 4.6 trang 11

Cho hàm số \(y = f\left( x \right)\) có đồ thị là (C). Xét điểm \(M\left( {x;f\left( x \right)} \right)\) thay đổi trên (C). Biết rằng, hệ số góc của tiếp tuyến của đồ thị (C) tại M là \({k_M} = {\left( {x - 1} \right)^2}\) và điểm M trùng với gốc tọa độ khi nó nằm trên trục tung. Tìm biểu thức f(x).

Bài 4.7 trang 11

Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm t giây (coi \(t = 0\) là thời điểm viên đạn được bắn lên), vận tốc của nó được cho bởi \(v\left( t \right) = 160 - 9,8t\left( {m/s} \right)\). Tìm độ cao của viên đạn (tính từ mặt đất). a) Sau \(t = 5\) giây; b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất).


Cùng chủ đề:

Giải toán 12 bài 6 trang 45, 46, 47 Kết nối tri thức
Giải toán 12 bài 7 trang 60, 61, 62 Kết nối tri thức
Giải toán 12 bài 8 trang 67, 68, 69 Kết nối tri thức
Giải toán 12 bài 9 trang 75, 76, 77 Kết nối tri thức
Giải toán 12 bài 10 trang 80, 81, 82 Kết nối tri thức
Giải toán 12 bài 11 trang 4,5,6 Kết nối tri thức
Giải toán 12 bài 12 trang 13,14,15 Kết nối tri thức
Giải toán 12 bài 13 trang 19,20,21 Kết nối tri thức
Giải toán 12 bài 14 trang 29,30,31 Kết nối tri thức
Giải toán 12 bài 15 trang 41,42,43 Kết nối tri thức
Giải toán 12 bài 16 trang 50,51,52 Kết nối tri thức