Trắc nghiệm Bài 6: Hình thoi Toán 8 Cánh diều
Đề bài
Hãy chọn câu sai .
-
A.
Tứ giác có 4 cạnh bằng nhau là hình thoi.
-
B.
Tứ giác có hai đường chéo vuông góc với nhau và bằng nhau là hình thoi.
-
C.
Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
-
D.
Hình bình hành có hai đường chéo vuông góc với nhau là h́ình thoi.
Điền từ thích hợp vào chỗ trống: “Tứ giác có hai đường chéo … là hình thoi”.
-
A.
bằng nhau.
-
B.
cắt nhau tại trung điểm mỗi đường và vuông góc với nhau.
-
C.
cắt nhau tại trung điểm mỗi đường.
-
D.
bằng nhau và cắt nhau tại trung điểm mỗi đường.
Hình thoi không có tính chất nào dưới đây?
-
A.
Hai đường chéo cắt nhau tại trung điểm mỗi đường.
-
B.
Hai đường chéo là các đường phân giác của các góc của hình thoi.
-
C.
Hai đường chéo vuông góc với nhau.
-
D.
Hai đường chéo bằng nhau.
Trong các hình sau, hình nào vừa có tâm đối xứng, vừa có trục đối xứng?
-
A.
Tam giác đều.
-
B.
Hình thang cân.
-
C.
Hình bình hành.
-
D.
Hình thoi.
-
A.
Cả ba hình đều là hình thoi.
-
B.
Hình 1 và hình 2 là hình thoi.
-
C.
Chỉ hình 1 là hình thoi.
-
D.
Cả ba hình đều không phải hình thoi.
Chọn câu trả lời sai .
-
A.
Hình bình hành có hai cạnh kề bằng nhau là hình thoi.
-
B.
Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
-
C.
Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
-
D.
Tứ giác có bốn góc bằng nhau là hình thoi.
Hình thoi có chu vi là 32 cm, cạnh hình thoi có độ dài là
-
A.
6 cm.
-
B.
8cm.
-
C.
12cm.
-
D.
16cm.
-
A.
Tứ giác có bốn cạnh bằng nhau.
-
B.
Tứ giác có hai đường chéo vuông góc.
-
C.
Hình bình hành có hai đường chéo bằng nhau.
-
D.
Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường
Hình thoi có độ dài hai đường chéo là 24cm và 10cm thì cạnh của hình thoi đó bằng
-
A.
12cm.
-
B.
13cm.
-
C.
14cm.
-
D.
15cm.
Cho hình thoi ABCD có chu vi bằng 16 cm, đường cao bằng 2 cm. Tính các góc của hình thoi. Hãy chọn câu trả lời đúng.
-
A.
\(\widehat A = \widehat C = {150^0};\widehat B = \widehat D = {30^0}.\)
-
B.
\(\widehat A = \widehat C = {30^0};\widehat B = \widehat D = {60^0}.\)
-
C.
\(\widehat A = \widehat C = {120^0};\widehat B = \widehat D = {60^0}.\)
-
D.
\(\widehat A = \widehat C = {30^0};\widehat B = \widehat D = {150^0}.\)
Tứ giác ABCD có AB = CD. Gọi M, N theo thứ tự là trung điểm của BC, DA. Gọi I, K theo thứ tự là trung điểm của AC và BD và\(MK = \frac{1}{2}CD;IM = \frac{1}{2}AB;NI = \frac{1}{2}CD;KN = \frac{1}{2}AB\). Tứ giác KMIN là hình gì?
-
A.
Hình chữ nhật.
-
B.
Hình bình hành.
-
C.
Hình thang cân.
-
D.
Hình thoi.
Các phương án sau, phương án nào sai?
-
A.
Các trung điểm của bốn cạnh hình chữ nhật là các đỉnh của một hình thoi.
-
B.
Các trung điểm của bốn cạnh hình thoi là bốn đỉnh của hình chữ nhật.
-
C.
Giao điểm của hai đường chéo của hình thoi là tâm đối xứng của hình thoi đó.
-
D.
Hình thoi của bốn trục đối xứng.
Hai đường chéo của hình thoi có độ dài lần lượt là 8cm và 10cm. Diện tích của hình thoi đó là ?
-
A.
40 cm.
-
B.
\(40c{m^2}\)
-
C.
\(80c{m^2}\)
-
D.
9 cm
Một hình thoi có diện tích là \(\frac{5}{3}d{m^2}\). Biết độ dài một đường chéo bằng \(\frac{{25}}{2}dm\). Tính độ dài đường chéo còn lại.
-
A.
\(\frac{4}{{15}}dm\)
-
B.
\(\frac{2}{{15}}dm\)
-
C.
\(\frac{3}{5}dm\)
-
D.
\(\frac{2}{7}dm\)
Cho hình thoi ABCD có O là giao điểm hai đường chéo, biết AC = 16cm và OB = 6cm. Tính CD?
-
A.
6cm
-
B.
8cm
-
C.
7cm
-
D.
10cm
Cho tam giác ABC vuông ở A, trung tuyến AM. Gọi D là trung điểm của AB và MD // AC, \({M'}\) là điểm đối xứng với M qua D. Tứ giác \(AMBM'\) là hình gì?
-
A.
Hình thoi.
-
B.
Hình bình hành.
-
C.
Hình chữ nhật.
-
D.
Hình thang.
Cho hình thang cân MNPQ. Gọi A, B, C, D lần lượt là các điểm thuộc các cạnh MN, NP, PQ, QM và \(AD = \frac{1}{2}QN\); \(BC = \frac{1}{2}QN,AB = \frac{1}{2}MP,DC = \frac{1}{2}MP\). Tứ giác ABCD là hình gì?
-
A.
Hình chữ nhật.
-
B.
Hình bình hành.
-
C.
Hình thang cân.
-
D.
Hình thoi.
Cho hình thoi ABCD có chu vi bằng 24cm, đường cao bằng 3cm. Tính \(\widehat {DCA}\).
-
A.
\(\widehat {DCA} = {150^0}.\)
-
B.
\(\widehat {DCA} = {70^0}.\)
-
C.
\(\widehat {DCA} = {60^0}.\)
-
D.
\(\widehat {DCA} = {75^0}.\)
Cho hình thoi ABCD có \(\widehat A\) tù. Biết đường cao kẻ từ đỉnh A đến cạnh CD chia cạnh đó thành hai đoạn bằng nhau. Tính các góc của hình thoi.
-
A.
\(\widehat B = \widehat D = {80^0},\widehat A = \widehat C = {100^0}\)
-
B.
\(\widehat B = \widehat D = {120^0},\widehat A = \widehat C = {60^0}\)
-
C.
\(\widehat B = \widehat C = {60^0},\widehat A = \widehat D = {120^0}\)
-
D.
\(\widehat B = \widehat D = {60^0},\widehat A = \widehat C = {120^0}\)
Cho hình bình hành ABCD có I là giao điểm hai đường chéo. Biết rằng AC = 6cm và BD = 8cm và AD = 5cm. Tìm khẳng định sai ?
-
A.
Tứ giác ABCD là hình thoi
-
B.
AI = BC
-
C.
AB = BC
-
D.
CD = 5 cm
Cho hình thoi ABCD. Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo DB. Tứ giác AGCH là hình gì?
-
A.
Hình thoi.
-
B.
Hình chữ nhật.
-
C.
Hình bình hành.
-
D.
Hình thang.
Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AD, BC. Các đường BE, DF cắt AC tại P, Q . Tứ giác EPFQ là hình thoi nếu \(\widehat {ACD}\) bằng
-
A.
\({45^0}\).
-
B.
\({90^0}\).
-
C.
\({60^0}\).
-
D.
\({75^0}\).
Lời giải và đáp án
Hãy chọn câu sai .
-
A.
Tứ giác có 4 cạnh bằng nhau là hình thoi.
-
B.
Tứ giác có hai đường chéo vuông góc với nhau và bằng nhau là hình thoi.
-
C.
Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
-
D.
Hình bình hành có hai đường chéo vuông góc với nhau là h́ình thoi.
Đáp án : B
Câu A, C, D đúng theo dấu hiệu nhận biết hình thoi.
Câu B sai vì 2 đường chéo không cắt nhau tại trung điểm mỗi đường.
Điền từ thích hợp vào chỗ trống: “Tứ giác có hai đường chéo … là hình thoi”.
-
A.
bằng nhau.
-
B.
cắt nhau tại trung điểm mỗi đường và vuông góc với nhau.
-
C.
cắt nhau tại trung điểm mỗi đường.
-
D.
bằng nhau và cắt nhau tại trung điểm mỗi đường.
Đáp án : B
Vì tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành.
Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
Hình thoi không có tính chất nào dưới đây?
-
A.
Hai đường chéo cắt nhau tại trung điểm mỗi đường.
-
B.
Hai đường chéo là các đường phân giác của các góc của hình thoi.
-
C.
Hai đường chéo vuông góc với nhau.
-
D.
Hai đường chéo bằng nhau.
Đáp án : D
Hình thoi có tất cả các tính chất của hình bình hành
+ Các cạnh đối song song và bằng nhau, các góc đối bằng nhau.
+ Hai đường chéo cắt nhau tại trung điểm mỗi đường.
Ngoài ra còn có
+ Hai đường chéo vuông góc với nhau.
+ Hai đường chéo là các đường phân giác của các góc của hình thoi.
Trong các hình sau, hình nào vừa có tâm đối xứng, vừa có trục đối xứng?
-
A.
Tam giác đều.
-
B.
Hình thang cân.
-
C.
Hình bình hành.
-
D.
Hình thoi.
Đáp án : D
Hình thoi có tâm đối xứng là giao điểm hai đường chéo, hai trục đối xứng là hai đường chéo của hình thoi.
-
A.
Cả ba hình đều là hình thoi.
-
B.
Hình 1 và hình 2 là hình thoi.
-
C.
Chỉ hình 1 là hình thoi.
-
D.
Cả ba hình đều không phải hình thoi.
Đáp án : C
Hình 1 là hình thoi vì có hai đường chéo cắt nhau tại trung điểm mỗi đường và vuông góc với nhau.
Hình 2 không là hình thoi vì bốn cạnh không bằng nhau.
Hình 3 không là hình thoi vì bốn cạnh không bằng nhau.
Chọn câu trả lời sai .
-
A.
Hình bình hành có hai cạnh kề bằng nhau là hình thoi.
-
B.
Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
-
C.
Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
-
D.
Tứ giác có bốn góc bằng nhau là hình thoi.
Đáp án : D
Vì theo dấu hiệu nhận biết hình thoi
Hình bình hành có hai cạnh kề bằng nhau là hình thoi.
Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
Hình chữ nhật là tứ giác có bốn góc bằng nhau nhưng bốn cạnh không bằng nhau nên không là hình thoi.
Hình thoi có chu vi là 32 cm, cạnh hình thoi có độ dài là
-
A.
6 cm.
-
B.
8cm.
-
C.
12cm.
-
D.
16cm.
Đáp án : B
Chu vi hình thoi bằng cạnh nhân 4.
Vậy cạnh hình thoi là 32 : 4 = 8 cm.
-
A.
Tứ giác có bốn cạnh bằng nhau.
-
B.
Tứ giác có hai đường chéo vuông góc.
-
C.
Hình bình hành có hai đường chéo bằng nhau.
-
D.
Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường
Đáp án : A
Tứ giác có bốn cạnh bằng nhau là hình thoi (đúng theo định nghĩa hình thoi)
Hình thoi có độ dài hai đường chéo là 24cm và 10cm thì cạnh của hình thoi đó bằng
-
A.
12cm.
-
B.
13cm.
-
C.
14cm.
-
D.
15cm.
Đáp án : B
Giả sử ABCD là hình thoi có hai đường chéo cắt nhau tại H và AC = 10cm, BD = 24cm.
Do ABCD là hình thoi nên \(AC \bot BD\)
\(\begin{array}{l}AH = \frac{1}{2}AC = \frac{1}{2}.10 = 5cm\\HB = \frac{1}{2}BD = \frac{1}{2}.24 = 12cm\end{array}\)
Xét tam giác AH vuông tại H ta có:
\(A{B^2} = A{H^2} + H{B^2} = {5^2} + {12^2} = 25 + 144 = 169.\)
Suy ra AB= 13 cm.
Cho hình thoi ABCD có chu vi bằng 16 cm, đường cao bằng 2 cm. Tính các góc của hình thoi. Hãy chọn câu trả lời đúng.
-
A.
\(\widehat A = \widehat C = {150^0};\widehat B = \widehat D = {30^0}.\)
-
B.
\(\widehat A = \widehat C = {30^0};\widehat B = \widehat D = {60^0}.\)
-
C.
\(\widehat A = \widehat C = {120^0};\widehat B = \widehat D = {60^0}.\)
-
D.
\(\widehat A = \widehat C = {30^0};\widehat B = \widehat D = {150^0}.\)
Đáp án : A
Vì hình thoi ABCD có chu vi bằng 16 cm nên cạnh hình thoi có độ dài là 16 : 4 = 4 cm.
Suy ra AD = 4 cm. Xét tam giác AHD vuông tại H có AH = 2cm, AD = 4cm nên
\(AH = \frac{1}{2}AD \Rightarrow \widehat {ADH} = {30^0}\) (theo tính chất).
Suy ra \(\widehat {DAB} = {180^0} - \widehat {ADC} = {180^0} - {30^0} = {150^0}.\) (Vì ABCD là hình thoi )
Nên hình thoi ABCD có:
\(\widehat A = \widehat C = {150^0};\widehat B = \widehat D = {30^0}\) (Vì hai góc đối bằng nhau).
Tứ giác ABCD có AB = CD. Gọi M, N theo thứ tự là trung điểm của BC, DA. Gọi I, K theo thứ tự là trung điểm của AC và BD và\(MK = \frac{1}{2}CD;IM = \frac{1}{2}AB;NI = \frac{1}{2}CD;KN = \frac{1}{2}AB\). Tứ giác KMIN là hình gì?
-
A.
Hình chữ nhật.
-
B.
Hình bình hành.
-
C.
Hình thang cân.
-
D.
Hình thoi.
Đáp án : D
MK = KN = NI = IM suy ra tứ giác KMIN là hình thoi.
Xét các tam giác BCD, CAB, ADC, DBA ta có:
\(MK = \frac{1}{2}CD;IM = \frac{1}{2}AB;NI = \frac{1}{2}CD;KN = \frac{1}{2}AB\)
Mà AB = CD (giả thiết) .
Suy ra MK = KN = NI = IM.
Tứ giác KMIN có bốn cạnh bằng nhau nên là hình thoi.
Các phương án sau, phương án nào sai?
-
A.
Các trung điểm của bốn cạnh hình chữ nhật là các đỉnh của một hình thoi.
-
B.
Các trung điểm của bốn cạnh hình thoi là bốn đỉnh của hình chữ nhật.
-
C.
Giao điểm của hai đường chéo của hình thoi là tâm đối xứng của hình thoi đó.
-
D.
Hình thoi của bốn trục đối xứng.
Đáp án : D
Định lí:
+ Hình thoi có hai trục đối xứng là hai đường chéo của hình thoi.
+ Có một tâm đối xứng là giao điểm của hai đường chéo.
Mở rộng:
+ Trong hình chữ nhật, các trung điểm của các cạnh hình chữ nhật là các đỉnh của một hình thoi.
+ Trong hình thoi, các trung điểm của bốn cạnh hình thoi là các hình chữ nhật.
→ Đáp án D sai.
Hai đường chéo của hình thoi có độ dài lần lượt là 8cm và 10cm. Diện tích của hình thoi đó là ?
-
A.
40 cm.
-
B.
\(40c{m^2}\)
-
C.
\(80c{m^2}\)
-
D.
9 cm
Đáp án : B
\(\left( {8.10} \right):2 = 40c{m^2}\)
Một hình thoi có diện tích là \(\frac{5}{3}d{m^2}\). Biết độ dài một đường chéo bằng \(\frac{{25}}{2}dm\). Tính độ dài đường chéo còn lại.
-
A.
\(\frac{4}{{15}}dm\)
-
B.
\(\frac{2}{{15}}dm\)
-
C.
\(\frac{3}{5}dm\)
-
D.
\(\frac{2}{7}dm\)
Đáp án : A
Độ dài đường chéo còn lại là:
\(\frac{5}{3}.2:\frac{{25}}{2} = \frac{4}{{15}}(dm)\)
Cho hình thoi ABCD có O là giao điểm hai đường chéo, biết AC = 16cm và OB = 6cm. Tính CD?
-
A.
6cm
-
B.
8cm
-
C.
7cm
-
D.
10cm
Đáp án : D
Do ABCD là hình thoi nên: \(AO = OC = \frac{1}{2}AC = \frac{1}{{2}}.16 = 8cm\)
Áp dụng định lí Pytago vào tam giác vuông ABO ta có:
\(A{B^2} = O{A^2} + O{B^2} = {8^2} + {6^2} = 64 + 36 = 100 \Rightarrow AB = 10cm\)
Vì ABCD là hình thoi nên AB = CD = 10cm
Cho tam giác ABC vuông ở A, trung tuyến AM. Gọi D là trung điểm của AB và MD // AC, \({M'}\) là điểm đối xứng với M qua D. Tứ giác \(AMBM'\) là hình gì?
-
A.
Hình thoi.
-
B.
Hình bình hành.
-
C.
Hình chữ nhật.
-
D.
Hình thang.
Đáp án : A
Chứng minh tứ giác \(AMBM'\) là hình bình hành có \(M{M'} \bot AB\)nên \(AMBM'\) là hình thoi
Vì \({M'}\)đối xứng M qua D nên \(DM = D{M'}\)(1)
Ta có: MD // AC
Mặt khác \(\Delta ABC\) vuông ở A nên \(AB \bot AC\).(2)
Từ (1) và (2) suy ra \(DM \bot AB \Rightarrow M{M'} \bot AB.\)
Vì D là trung điểm của AB (gt) và D là trung điểm của M\({M'}\) nên tứ giác \(AMB{M'}\) là hình bình hành. Mặt khác \(M{M'} \bot AB\) nên \(AMB{M'}\) là hình thoi. (Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.)
Cho hình thang cân MNPQ. Gọi A, B, C, D lần lượt là các điểm thuộc các cạnh MN, NP, PQ, QM và \(AD = \frac{1}{2}QN\); \(BC = \frac{1}{2}QN,AB = \frac{1}{2}MP,DC = \frac{1}{2}MP\). Tứ giác ABCD là hình gì?
-
A.
Hình chữ nhật.
-
B.
Hình bình hành.
-
C.
Hình thang cân.
-
D.
Hình thoi.
Đáp án : D
Do MNPQ là hình thang cân nên MP = NQ. (hình thang cân có hai đường chéo bằng nhau). (1)
Xét các tam giác MNQ ; PQN, MNP, QMP ta có:
\(AD = \frac{1}{2}QN\); \(BC = \frac{1}{2}QN,AB = \frac{1}{2}MP,DC = \frac{1}{2}MP\)
Suy ra AB = BC = CD = DA.
Do đó ABCD là hình thoi. (Tứ giác có bốn cạnh bằng nhau là hình thoi.)
Cho hình thoi ABCD có chu vi bằng 24cm, đường cao bằng 3cm. Tính \(\widehat {DCA}\).
-
A.
\(\widehat {DCA} = {150^0}.\)
-
B.
\(\widehat {DCA} = {70^0}.\)
-
C.
\(\widehat {DCA} = {60^0}.\)
-
D.
\(\widehat {DCA} = {75^0}.\)
Đáp án : D
Vì hình thoi ABCD có chu vi bằng 24cm nên cạnh hình thoi có độ dài là 24 : 4 = 6cm.
Suy ra AD = 6cm. Xét tam giác AHD vuông tại H có.
\(AH = \frac{1}{2}AD \Rightarrow \widehat {ADH} = {30^0}\) ( theo tính chất).
Suy ra \(\widehat {DAB} = {180^0} - \widehat {ADC} = {180^0} - {30^0} = {150^0}\).(Vì ABCD là hình thoi )
Nên hình thoi ABCD có:
\(\widehat A = \widehat C = {150^o}\); \(\widehat B = \widehat D = {30^o}\) (Vì hai góc đối bằng nhau).
Lại có tia CA là tia phân giác \(\widehat {DCB}\) (tính chất hình thoi).
Nên \(\widehat {DCA} = \frac{1}{2}\widehat {DCB} = \frac{1}{2}{.150^0} = {75^0}\)
Hai đường chéo là các đường phân giác của các góc của hình thoi
Cho hình thoi ABCD có \(\widehat A\) tù. Biết đường cao kẻ từ đỉnh A đến cạnh CD chia cạnh đó thành hai đoạn bằng nhau. Tính các góc của hình thoi.
-
A.
\(\widehat B = \widehat D = {80^0},\widehat A = \widehat C = {100^0}\)
-
B.
\(\widehat B = \widehat D = {120^0},\widehat A = \widehat C = {60^0}\)
-
C.
\(\widehat B = \widehat C = {60^0},\widehat A = \widehat D = {120^0}\)
-
D.
\(\widehat B = \widehat D = {60^0},\widehat A = \widehat C = {120^0}\)
Đáp án : D
Gọi H là chân đường cao kẻ từ A đến cạnh CD. Từ giả thiết ta có: \(AH \bot CD\), CH = HD suy ra AH là đường trung trực của đoạn CD nên AC = AD (1)
Do ABCD là hình thoi nên AD = CD (2)
Từ (1) và (2) suy ra AD = CD = AC nên \(\Delta ACD\)là tam giác đều, do đó\(\widehat D = {60^0}\).
Vì AB // CD nên \(\widehat {DAB} + \widehat D = {180^0}\) (hai góc trong cùng phía)
\( \Rightarrow \widehat {DAB} = {180^0} - \widehat D = {180^0} - {60^0} = {120^0}\).
Áp dụng tính chất về góc vào hình thoi ABCD ta được: \(\widehat B = \widehat D = {60^0},\widehat A = \widehat C = {120^0}\)
Cho hình bình hành ABCD có I là giao điểm hai đường chéo. Biết rằng AC = 6cm và BD = 8cm và AD = 5cm. Tìm khẳng định sai ?
-
A.
Tứ giác ABCD là hình thoi
-
B.
AI = BC
-
C.
AB = BC
-
D.
CD = 5 cm
Đáp án : D
Theo tính chất hình bình hành ta có: I là trung điểm của AC và BD.
Suy ra:
\(\begin{array}{l}AI = \frac{1}{2}AC = \frac{1}{2}.6 = 3cm\\DI = \frac{1}{2}B{\rm{D}} = \frac{1}{2}.8 = 4cm\end{array}\)
Xét tam giác AID có: \(A{I^2} + I{{\rm{D}}^2} = A{{\rm{D}}^2}\left( {{3^2} + {4^2} = {5^2}} \right)\)
Suy ra: tam giác AID là tam giác vuông: AI ⊥ DI hay AC ⊥ BD
Hình bình hành ABCD có 2 đường chéo AC và BD vuông góc với nhau nên là hình thoi.
Suy ra: AB = BC = CD = DA = 5cm
Hai đường chéo của hình thoi cắt nhau tại trung điểm của mỗi đường.
Cho hình thoi ABCD. Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo DB. Tứ giác AGCH là hình gì?
-
A.
Hình thoi.
-
B.
Hình chữ nhật.
-
C.
Hình bình hành.
-
D.
Hình thang.
Đáp án : A
Gọi O là giao điểm của AC và BD thì \(AC \bot BD\) (do O là giao điểm của hai đường chéo của hình thoi)
Áp dụng định nghĩa, tính chất về góc và giả thiết vào hình thoi ABCD, ta được:
\(AB = AD;\widehat B = \widehat D;BE = DF\)
Từ đó suy ra \(\Delta ABE = \Delta ADF\)(c-g-c).
Suy ra \(\widehat {A{}_1} = \widehat {{A_4}}\)( hai góc tương ứng).
Mà AC là phân giác của \(\widehat {BAD} \Rightarrow \widehat {{A_2}} = \widehat {{A_3}}\)(1)
Xét tam giác AGH có AO là đường cao, đồng thời là đường phân giác nên tam giác AGH cân tại A.
Suy ra HO = OG (2)
Do ABCD là hình thoi nên AO = OC (tính chất đường chéo của hình thoi) (3)
Từ (1), (2), (3) suy ra: AHCG là hình thoi.
Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AD, BC. Các đường BE, DF cắt AC tại P, Q . Tứ giác EPFQ là hình thoi nếu \(\widehat {ACD}\) bằng
-
A.
\({45^0}\).
-
B.
\({90^0}\).
-
C.
\({60^0}\).
-
D.
\({75^0}\).
Đáp án : B
Gọi O là giao điểm của hai đường chéo AC và BD.
Vì ABCD là hình bình hành nên O là trung điểm của AC, BD và AD //CB, AD = BC
Xét tứ giác EDFB có ED // FB, \(ED = FB\left( { = \frac{1}{2}AD = \frac{1}{2}BC} \right)\).
Nên EDFB là hình bình hành.
Suy ra: BE = DF, BE // DF.
Xét \(\Delta ABD\)có P là giao điểm hai đường trung tuyến BE, AO nên P là trọng tâm
\(\Delta ABD \Rightarrow EP = \frac{1}{3}BE\).
Xét \(\Delta CBD\)có Q là giao điểm hai đường trung tuyến DF, CO nên Q là trọng tâm
\(\Delta CBD \Rightarrow QF = \frac{1}{3}DF\).
Mà BE = DF (cmt) \( \Rightarrow \)EP = QF.
Xét tứ giác EPFQ có \( \Rightarrow \)EP = QF, EP // QF \( \Rightarrow \)EPFQ là hình bình hành.
Để hình bình hành EPFQ là hình thoi thì \({\rm{EF}} \bot PQ\).
Mà EF // CD (do hình bình hành ABCD có AB //CD, E là trung điểm AD, F là trung điểm BC ).
Nên \(CD \bot PQ\) hay \(CD \bot AC \Rightarrow \widehat {ACD} = {90^0}\).